Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T22:29:31.358Z Has data issue: false hasContentIssue false

Personal Robust Navigation in Challenging Applications

Published online by Cambridge University Press:  02 March 2011

Valérie Renaudin
Affiliation:
(Ecole Polytechnique Fédérale de Lausanne (EPFL))
Pierre-Yves Gilliéron*
Affiliation:
(Ecole Polytechnique Fédérale de Lausanne (EPFL))
*

Abstract

Personal navigation has grown rapidly with the introduction of ubiquitous computing and the new generation of smart phones. Appropriate localisation is nowadays a central element for many applications and mobile services. However the proper estimation of the user's location remains a challenge. This paper presents an innovative concept for accurate and reliable positioning in challenging applications. It consists of three components: an absolute geographical reference, the hybridisation of complementary technologies and specific motion models. Two different applications illustrate this concept: urban displacement of blind people and guidance of firefighters. The validity of the concept is assessed with indoor experimental results. Finally the conclusion gives a prospective view of robust personal navigation.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Delavy, Th. (2008) Modélisation des espaces de circulation pour la navigation des personnes aveugles, Master Thesis, Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Topométrie.Google Scholar
Fischler, M.A. & Bolles, R.C. (1981), Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications of the ACM, 24(6), 381395.Google Scholar
Gilliéron, P.-Y., Büchel, D., Spassov, I. & Merminod, B. (2004) Indoor navigation performance analysis, European Navigation Conference, ENC-GNSS 2004, Rotterdam.Google Scholar
Gilliéron, P.-Y., Chazal, V., Delavy, Th., Flamm, M., Von der Mühll, D. & Ruzicka-Rossier, M. (2008) La navigation pédestre dans l'espace public: évaluation des besoins et esquisses de solutions, Ecole Polytechnique Fédérale de Lausanne, technical project report.Google Scholar
Hightower, J. & Boriello, G. (2001) Location Systems for Ubiquitous Computing, IEEE Computer, 34(8), 5766.Google Scholar
Liaison Consortium (2006) Mission Requirements Document, Deliverable D056, FP6 LIAISON European Project.Google Scholar
Quéré, L. & Relieu, M. (2001) Mode de locomotion et inscriptions spatiale des inégalités: les déplacements des personnes atteintes de handicaps visuels et moteurs dans l'espace publics, Rapport de recherche CEMS-EHESS.Google Scholar
Renaudin, V. (2009) Hybridation MEMS/UWB pour la navigation pédestre intra-muros, PhD Thesis no 4429, Ecole Polytechnique Fédérale de Lausanne.Google Scholar
Renaudin, V., Yalak, O., Tomé, P. & Merminod, B. (2007) Indoor Navigation of Emergency Agents, European Journal of Navigation, 5(3), 3645.Google Scholar
Tiemeyer, B. (2002) Performance Evaluation of Satellite Navigation and Safety Case Development, Eurocontrol Experimental Center – report 370.Google Scholar
US Department of Defense, Department of Homeland Security & Department of Transportation Federal (2005) Federal Radionavigation Plan, National Technical Information Service, Virginia.Google Scholar