Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T21:07:15.464Z Has data issue: false hasContentIssue false

Modelling and assessment of Galileo and Galileo/GPS velocity determination with stand-alone receiver

Published online by Cambridge University Press:  26 March 2021

Xiao Yin*
Affiliation:
Information Engineering University, Zhengzhou45007, China
Hongzhou Chai
Affiliation:
Information Engineering University, Zhengzhou45007, China
Minzhi Xiang
Affiliation:
Information Engineering University, Zhengzhou45007, China
Zhenqiang Du
Affiliation:
Information Engineering University, Zhengzhou45007, China
*
*Corresponding author. E-mail: [email protected]

Abstract

Reasonable stochastic model and function model are the premise of accurate velocity determination, especially in the time-differenced carrier-phase (TDCP) method. This paper presents, first, an elevation-dependent stochastic model (ESM), and then gives a simplified and unified Galileo/GPS combined TDCP function model, where the inter-system bias (ISB) variations are analysed based on correlation coefficients and the scaled sensitivity matrix. To evaluate the performance of the proposed models, datasets collected at 10 multi-GNSS experiment (MGEX) stations and a vehicle kinematic experiment are employed. The results indicate that the ESM model can improve the accuracy of the velocity solution, especially for the Galileo/GPS combined system, in comparison with the equivalent weight ratio method. In contrast to the Galileo-only velocity solution, the Galileo/GPS combined velocity solution can bring improvements of about 1–1⋅5 mm/s, 0⋅5 mm/s and 1⋅5–2⋅5 mm/s in East, North and Up components, respectively. Compared with the traditional Galileo/GPS TDCP model, the simplified and unified model shows no obvious differences in all components in the environment with more visible satellites, but it performs better in a challenging environment with few visible satellites.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruton, A. M., Glennie, C. and Schwarz, K. P. (1999). Differentiation for high-precision GPS velocity and acceleration determination. GPS Solutions, 2(4), 721.10.1007/PL00012771CrossRefGoogle Scholar
Cai, C. and Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solutions, 17(2), 223236.10.1007/s10291-012-0273-9CrossRefGoogle Scholar
Cannon, E., Lachapelle, G., Szarmes, M., Hebert, J., Keith, J., Jokerst, S. and Base, H. (1997). DGPS kinematic carrier phase signal simulation analysis for precise velocity and position determination. Navigation, 44(2), 231245.10.1002/j.2161-4296.1997.tb02345.xCrossRefGoogle Scholar
Chen, J., Zhang, Y., Wang, J., Yang, S., Dong, D., Wang, J., Qu, W. and Wu, B. (2015). A simplified and unified model of multi-GNSS precise point positioning. Advances in Space Research, 55(1), 125134.10.1016/j.asr.2014.10.002CrossRefGoogle Scholar
Dach, R., Brockmann, E., Schaer, S., Beutler, G., Meindl, M., Prange, L., Bock, H., Jäggi, A. and Ostini, L. (2009). GNSS processing at CODE: Status report. Journal of Geodesy, 83(3-4), 353365.10.1007/s00190-008-0281-2CrossRefGoogle Scholar
Ding, W. and Wang, J. (2011). Precise velocity estimation with a stand-alone GPS receiver. Journal of Navigation, 64(02), 311325.10.1017/S0373463310000482CrossRefGoogle Scholar
Dong, D., Fang, P., Bock, Y., Cheng, M. K. and Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research Solid Earth, 107(B4), 2075.Google Scholar
Duan, S., Sun, W., Ouyang, C., Chen, X. and Shi, J. (2019). Reducing the effect of positioning errors on kinematic raw Doppler (RD) velocity estimation using BDS-2 precise point positioning. Sensors, 19(13), 3029.10.3390/s19133029CrossRefGoogle ScholarPubMed
Freda, P., Angrisano, A., Gaglione, S. and Troisi, S. (2015). Time-differenced carrier phases technique for precise GNSS velocity estimation. GPS Solutions, 19(2), 335341.10.1007/s10291-014-0425-1CrossRefGoogle Scholar
He, H., Yang, Y. and Sun, Z. (2002). A comparison of several approaches for velocity determination with GPS. Acta Geodaetica et Cartographica Sinica, 31(3), 217221.Google Scholar
Jiang, N., Xu, Y., Xu, T., Xu, G., Zhang, S. and Schuh, H. (2016). GPS/BDS short-term ISB modelling and prediction. GPS Solutions, 21(1), 113.Google Scholar
Kennedy, S. L. (2003). Precise acceleration determination from carrier-phase measurements. Navigation, 50(1), 919.10.1002/j.2161-4296.2003.tb00314.xCrossRefGoogle Scholar
Li, B., Shen, Y. and Xu, P. (2008). Assessment of stochastic models for GPS measurements with different types of receivers. Chinese Science Bulletin, 53(20), 32193225.Google Scholar
Li, M., Xu, T., Lu, B. and He, K. (2018). Multi-GNSS precise orbit positioning for airborne gravimetry over Antarctica. Journal of Navigation, 23(2), 118.Google Scholar
Li, M., Neumayer, K. H., Flechtner, F., Lu, B., Förste, C., He, K. and Xu, T. (2019). Performance assessment of multi-GNSS precise velocity and acceleration determination over Antarctica. Journal of Navigation, 72(1), 118.10.1017/S0373463318000656CrossRefGoogle Scholar
Liu, Z., Chen, G., Zhao, Q., Hu, Z. and Qu, L. (2014). Principle and precision analysis of BDS absolute velocity determination. Journal of Geodesy and Geodynamics, 34(6), 114118.Google Scholar
Paziewski, J., Sieradzki, R. and Wielgosz, P. (2018). On the applicability of Galileo FOC satellites with incorrect highly eccentric orbits: An evaluation of instantaneous medium-range positioning. Remote Sensing, 10(2), 208.10.3390/rs10020208CrossRefGoogle Scholar
Robustelli, U., Benassai, G. and Pugliano, G. (2019). Signal in space error and ephemeris validity time evaluation of Milena and Doresa Galileo satellites. Sensors, 19(8), 1786.10.3390/s19081786CrossRefGoogle ScholarPubMed
Steigenberger, P. and Montenbruck, O. (2016). Galileo status: Orbits, clocks, and positioning. GPS Solutions, 21(2), 113.Google Scholar
Teunissen, P. J. G. and Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems. Cham, Switzerland: Springer.10.1007/978-3-319-42928-1CrossRefGoogle Scholar
Tian, Y., Sui, L., Xiao, G., Zhao, D. and Tian, Y. (2019). Analysis of Galileo/BDS/GPS signals and RTK performance. GPS Solutions, 23(2), 37.10.1007/s10291-019-0831-5CrossRefGoogle Scholar
Van Graas, F. and Soloviev, A. (2004). Precise velocity estimation using a stand-alone GPS receiver. Navigation, 51(4), 283292.10.1002/j.2161-4296.2004.tb00359.xCrossRefGoogle Scholar
Wang, J., Yang, Y., Zhang, Q., Huang, G. and Han, J. (2019). Analysis of inter-system bias in multi-GNSS precise point positioning. Geomatics and Information Science of Wuhan University, 44(4), 475481.Google Scholar
Ye, S., Yan, Y. and Chen, D. (2017). Performance analysis of velocity estimation with BDS. Journal of Navigation, 70(3), 580594.10.1017/S0373463316000813CrossRefGoogle Scholar
Zhang, X. and Ding, L. (2013). Quality analysis of the second generation compass observables and stochastic model refining. Geomatics & Information Science of Wuhan University, 38(7), 832836.Google Scholar
Zhang, J., Zhang, K., Grenfell, R. and Deakin, R. (2006). GPS satellite velocity and acceleration determination using the broadcast ephemeris. Journal of Navigation, 59(2), 293.10.1017/S0373463306003638CrossRefGoogle Scholar
Zhang, J., Zhang, K., Grenfell, R. and Deakin, R. (2008). On real-time high precision velocity determination for standalone GPS users. Survey Review, 40(310), 366378.10.1179/003962608X325420CrossRefGoogle Scholar
Zhang, X., Guo, B., Guo, F. and Du, C. (2012). Influence of clock jump on the velocity and acceleration estimation with a single GPS receiver based on carrier-phase-derived Doppler. GPS Solutions, 17(4), 549559.10.1007/s10291-012-0300-xCrossRefGoogle Scholar
Zheng, K. and Tang, L. (2015). Performance assessment of BDS and GPS/BDS velocity estimation with stand-alone receiver. Journal of Navigation, 69(4), 869882.10.1017/S0373463315000958CrossRefGoogle Scholar
Zhou, Z., Shen, Y. and Li, B. (2011). Moving time-window based real-time estimation algorithm for the stochastic model of GPS/Doppler navigation. Acta Geodaetica et Cartographica Sinica, 40(2), 220225.Google Scholar