Published online by Cambridge University Press: 09 August 2007
Indoor positioning imposes demanding requirements on the design of Global Navigation Satellite System (GNSS) sensors for both the acquisition and tracking functions. Although different combinations of coherent and non-coherent integration periods of a GNSS signal can be used to achieve reliable acquisition of the GNSS signals and indoors positioning, there are limitations to the extent that the integration period of the signal energy can be increased set by the receiver and satellite dynamics and the stability of the local oscillator. Assisting networks for GNSS applications (AGNSS) provide users with the capability of using long integration periods, enabling them to acquire indoor signals at low Carrier to Noise Ratio (CNR) values, where CNR is defined as the ratio of the received signal power over the noise density in units of dB-Hz. In this work we propose and evaluate the potential of a new method that will provide the user with an additional signal energy margin for accurate and reliable indoor positioning, with or without relying on assisted GNSS-type algorithms. The technique proposed here is based on the coherent and non-coherent combination of the energy of signals transmitted from the same GNSS satellite on different frequencies using the multiple open service signals that are to be provided by the Galileo system and under the GPS modernisation. This paper shows the improvement to the receiver acquisition and tracking performance using the proposed technique of combining energies at the L1, L2 and L5 bands for both data and pilot signals.