No CrossRef data available.
Article contents
A brain-inspired relative navigation method for collective UAVs based on neurodynamics of social place cells and grid cells
Published online by Cambridge University Press: 11 March 2025
Abstract
The recently discovered social place cells and grid cells in hippocampal formation are believed to be the neural basis underlying relative navigation of conspecifics. In this paper, we propose a new brain-inspired relative navigation model in a large-scale 3D environment for collective UAVs that translates the neurodynamics of the social place cell–grid cell circuit to robotic relative navigation algorithm for the first time. Our approach comprises three key parts: (1) a 3D isotropic Gaussian function-based cube social place cell network (cube-SPCNet), (2) a 3D continuous attractor neural network-based cube grid cell network (cube-GCNet), and (3) a population vector-based neural decoding module. The resulting brain-inspired relative navigation model incorporates the good relative information abstraction capabilities of the cube-SPCNet with the powerful temporal filtering capabilities of the cube-GCNet, yielding robustness and accuracy performance improvement for relative navigation. Experimental results show the new method can provide more robust and precise relative navigation results than its conventional counterpart, displaying a possible brain-inspired solution for relative navigation enhancement for collective UAVs.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Institute of Navigation