Published online by Cambridge University Press: 05 July 2019
Both the code–phase combination and the Geometry-Free (GF) phase combination are widely employed to detect and repair cycle slips for BeiDou Navigation Satellite System (BDS) triple-frequency observations. However, the effect of residual ionospheric delay on Narrow-Lane (NL) or GF observations must be considered to avoid incorrect cycle–slip estimation. To improve the accuracy in repairing cycle slips, a corrective ionospheric delay value predicted from the previous ionosphere sequence is used to amend the NL or GF observations at the current epoch. The main purpose of the work reported here is to evaluate the efficacy of a three-step method proposed to detect and repair cycle slip using two extra-wide-lane code–phase and one GF phase combination observations. BDS triple-frequency data were processed in two stages: separate processing of geosynchronous Earth orbit satellites, and the division of inclined geosynchronous satellite orbit and medium Earth orbit satellites into two groups for processing at 30° elevation thresholds. Results revealed that using the prediction models to correct NL or GF observations could ensure a rounding success rate of cycle slip close to 100%, even under high ionospheric activity.