Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T17:09:02.423Z Has data issue: false hasContentIssue false

Safety analysis of RNP approach procedure using fusion of FRAM model and Bayesian belief network

Published online by Cambridge University Press:  06 June 2023

Diogo Oliveira*
Affiliation:
Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (SP), Brazil
Alison Moraes
Affiliation:
Departamento de Ciência e Tecnologia Aeroespacial, Instituto de Aeronáutica e Espaço, São José dos Campos (SP), Brazil
Moacyr Cardoso Junior
Affiliation:
Instituto Tecnologico de Aeronautica, Sao Jose dos Campos (SP), Brazil
Leonardo Marini-Pereira
Affiliation:
Departamento de Controle do Espaço Aéreo, Instituto de Controle do Espaço Aéreo, São José dos Campos (SP), Brazil
*
*Corresponding author: Diogo Oliveira; Email: [email protected]

Abstract

The use of the required navigation performance (RNP) procedure has been increasing for aircraft navigation, since it allows for better optimisation of the airspace, which is increasingly congested. The present work aims to investigate the application of the functional resonance analysis method (FRAM), combined with the quantitative analysis provided by the Bayesian belief network (BBN), to demonstrate the existing variability in functions that are part of the complex navigation system based on the RNP procedure, specifically when the aircraft approaches the airport (approach phase). As a result, it is possible to analyse the variability that occurs in the studied system and the BBN complemented the study by allowing a quantitative interpretation of the functions considered most important for the execution of an RNP approach procedure.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ANAC (2017). Instrução Suplementar IS N. 91-001. Aprovação operacional de navegação baseada em desempenho (PBN). Brazil.Google Scholar
Carvalho, L. M. Gd., Oliveira, T. Cd. and Cardoso Junior, M. M. (2021). Delphi, bayesian networks in the analysis of fatigue in air traffic events in practical atc instruction. In: Black, N. L., Neumann, W. P., Noy, I. (eds.). Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021). Springer International Publishing, 478–484. https://doi.org/10.1007/978-3-030-74602-5_67CrossRefGoogle Scholar
Charniak, E. (1991). Bayesian networks without tears. AI Magazine, 12(4). doi:10.1609/aimag.v12i4.918Google Scholar
Christoffersen, K. and Woods, D. (2001). How to make automated systems team players. Advances in Human Performance and Cognitive Engineering Research. Vol. 2. https://doi.org/10.1016/S1479-3601(02)02003-9CrossRefGoogle Scholar
de Carvalho, P. V. R. (2011). The use of functional resonance analysis method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering & System Safety, 96(11), 14821498. doi:10.1016/j.ress.2011.05.009CrossRefGoogle Scholar
de Oliveira Moraes, A., Vani, B. C., Costa, E., Abdu, M. A., de Paula, E. R., Sousasantos, J., Monico, J. F. G., Forte, B, de Siqueira Negreti, P. M. and Shimabukuro, M. H. (2018). Gps availability and positioning issues when the signal paths are aligned with ionospheric plasma bubbles. GPS Solutions, 2. doi:10.1007/s10291-018-0760-8.Google Scholar
Fenton, N. and Neil, M. (2011). The use of Bayes and causal modelling in decision making, uncertainty and risk 12.Google Scholar
Fowler, D. and Meyerhoff, D. (2018a). Safety assessment of ‘RNP parallel approach transitions’: a new air traffic management operational concept. Part 1 – safety specification. Safety and Reliability, 38(4), 246274. doi:10.1080/09617353.2019.1625009CrossRefGoogle Scholar
Fowler, D. and Meyerhoff, D. (2018b). Safety assessment of ‘RNP parallel approach transitions’: a new air traffic management operational concept. Part 2 – safety design and implementation. Safety and Reliability, 38(4), 275302. doi:10.1080/09617353.2019.1632548CrossRefGoogle Scholar
Ham, D. H., Yoon, W. C. and Han, B. T. (2008). Experimental study on the effects of visualized functionally abstracted information on process control tasks. Reliability Engineering and System Safety, 93(2), 254270. doi:10.1016/j.ress.2006.12.003CrossRefGoogle Scholar
Hirose, T., Hideki, N., Hollnagel, E., Hill, R., Sawaragi, T. and Slater, D. (2020). Treating variability formally in FRAM. https://doi.org/10.13140/RG.2.2.26507.72485CrossRefGoogle Scholar
Hollnagel, E. (2012). The Functional Resonance Analysis Method Modelling Complex Socio-Technical system. Farnham, England: CRC Press.Google Scholar
Hollnagel, E., Woods, D. and Levenson, N. (2006). Resilience engineering: Concepts and precepts. Aldershot, UK: Ashgate.Google Scholar
Hollnagel, E., Hounsgaard, J. and Colligan, L. (2014). FRAM – The Functional Resonance Analysis Method – A Handbook for the Practical Use of the Method. Middelfart, Denmark: Centre for Quality.Google Scholar
ICAO (2008). Performance-based Navigation (PBN) Manual. Montreal.Google Scholar
ICAO (2017). Air Navigation Report. Montreal.Google Scholar
Kelley, M. (1989). The Earth's Ionosphere. Burlington, USA: Elsevier. doi:10.1016/B978-0-12-404013-7.X5001-1.Google Scholar
Macêdo, T. F., Cardoso Júnior, M. M. and Silva, M. Hd. O. Cd. (2021). Measurement of the variability of flight test instruction organizational processes. In: Proceedings of Congresso ABRISCO 2021. Rio de Janeiro: ABRISCO.Google Scholar
Marini-Pereira, L., Pullen, S., de Oliveira Moraes, A. and Sousasantos, J. (2021). Ground-based augmentation systems operation in low latitudes. Part 1: challenges, mitigations, and future prospects. Journal of Aerospace Technology and Management, 1. doi:10.1590/jatm.v13.1236Google Scholar
Marques, R. L. and Dutra, I (2002). Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Rio de Janeiro.Google Scholar
Marshall, S. D., Harrison, J. and Flanagan, B. T. (2009). The teaching of a structured tool improves the clarity and content of interprofessional clinical communication. BMJ Quality & Safety, 18(2), 137140. doi: http://dx.doi.org/10.1136/qshc.2007.025247CrossRefGoogle ScholarPubMed
Monico, J. F. G., de Paula, E. R., de Oliveira Moraes, A., Costa, E., Shimabukuro, M. H., Alves, D. M. B., Souza, J. R. D., Camargo, P. D. O., Prol, F. D. S., Vani, B. C., Pereira, V. S. A., de Oliveira Junior, P. S., Tsuchiya, I. and Aguiar, C. R. (2022). The gnss navaer inct project overview and main results. Journal of Aerospace Technology and Management, 14. doi:10.1590/jatm.v14.1249CrossRefGoogle Scholar
Moura, B., Vilar, G., Correia Neto, J. and Mourato, F. (2015). Uma aplicação de redes bayesianas em cardiologia pediátrica. Saúde e Pesquisa, 8, 4553.Google Scholar
Noguerol, A. R. (2002). Correlação de alarmes e diagnóstico no gerenciamento de sistemas supervisionados por computador. Universidade Federal do Rio Grande do Sul. http://hdl.handle.net/10183/1702Google Scholar
Pamplona, D. A. (2014). Mensuração dos benefícios pela introdução dos Procedimentos de Navegação Baseados em Performance. Instituto Tecnologico de Aeronautica. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3077Google Scholar
Pamplona, D. and Jorge, C. (2019). Human factor analysis when implementing performance- based navigation procedures in aviation. International Journal of Science and Engineering Investigations, 8, 117.Google Scholar
Patriarca, R., Di Gravio, G. and Costantino, F. (2017). A monte carlo evolution of the functional resonance analysis method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 4960. doi:10.1016/j.ssci.2016.07.016CrossRefGoogle Scholar
Portilho, F. A. and Bukzem, S. C. (2015). Os precedentes históricos da navegação aérea baseada em instrumentos: necessidade, surgimento e evolução. Journal of Aeronautical Sciences, 6(1). doi:10.15448/2179-703X.2015.1.21165Google Scholar
Pott, C., Johnson, A. and Cnossen, F. (2005). Improving situation awareness in anesthesiology. In: Maramas, M., Kontogiannis, T., Nathanael, D. (eds.). Proceedings of the Annual Conference of the European Association of Cognitive Ergonomics (EACE ’05), 247–254.Google Scholar
Righi, A. W., Saurin, T. A. and Wachs, P. (2015). A systematic literature review of resilience engineering: research areas and a research agenda proposal. Reliability Engineering & System Safety, 141, 142152. doi:10.1016/j.ress.2015.03.007CrossRefGoogle Scholar
Rodrigues, R. G., de Oliveira, D. B. P., de Oliveira Moraes, A. and Marini-Pereira, L. (2022). Safety analysis of gnss parallel runway approach operation at guarulhos international airport. Journal of Aerospace Technology and Management, 14. doi:10.1590/jatm.v14.1260CrossRefGoogle Scholar
Sousasantos, J., Marini-Pereira, L., de Oliveira Moraes, A. and Pullen, S. (2021). Ground-based augmentation system operation in low latitudes. Part 2: Space weather, ionospheric behavior and challenges. Journal of Aerospace Technology and Management, 1. doi:10.1590/jatm.v13.1237Google Scholar
Tian, W. and Caponecchia, C. (2020). Using the functional resonance analysis method (FRAM) in aviation safety: a systematic review. Journal of Advanced Transportation, 2020. doi:10.1155/2020/8898903CrossRefGoogle Scholar
Tian, Y., Wan, L., Chen, C.-h. and Yang, Y. (2015). Safety assessment method of performance-based navigation airspace planning. Journal of Traffic and Transportation Engineering English Edition, 2. doi:10.1016/j.jtte.2015.08.005Google Scholar
Verbano, C. and Turra, F. (2010). A human factors and reliability approach to clinical risk management: evidence from italian cases. Safety Science, 48(5), 625639. doi:10.1016/j.ssci.2010.01.014CrossRefGoogle Scholar