Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T00:52:26.878Z Has data issue: false hasContentIssue false

Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo

Published online by Cambridge University Press:  01 February 2017

Lin Pan
Affiliation:
(School of Geodesy and Geomatics, Wuhan University, Wuhan, China) (Collaborative Innovation Center for Geospatial Technology, 129 Luoyu Road, Wuhan, China)
Xiaohong Zhang*
Affiliation:
(School of Geodesy and Geomatics, Wuhan University, Wuhan, China) (Collaborative Innovation Center for Geospatial Technology, 129 Luoyu Road, Wuhan, China)
Jingnan Liu
Affiliation:
(School of Geodesy and Geomatics, Wuhan University, Wuhan, China)
Xingxing Li
Affiliation:
(School of Geodesy and Geomatics, Wuhan University, Wuhan, China) (German Research Centre for Geosciences (GFZ), Telegrafenberg, Potsdam, Germany)
Xin Li
Affiliation:
(School of Geodesy and Geomatics, Wuhan University, Wuhan, China)
*

Abstract

In view that most Global Navigation Satellite System (GNSS) users are still using single-frequency receivers due to the low costs, single-frequency Precise Point Positioning (PPP) has been attracting increasing attention in the GNSS community. For a long period, single-frequency PPP technology has mainly relied on the Global Positioning System (GPS). With the recent revitalisation of the Russian GLONASS constellation and two newly emerging constellations, BeiDou and Galileo, it is now feasible to investigate the performance of Four-Constellation integrated Single-Frequency PPP (FCSF-PPP) with GPS, GLONASS, BeiDou and Galileo measurements. In this study, a FCSF-PPP model is presented to simultaneously process observations from all four GNSS constellations. Datasets collected at 47 globally distributed four-system Multi-GNSS Experiment (MGEX) stations on seven consecutive days and a kinematic experimental dataset are employed to fully assess the performance of FCSF-PPP. The FCSF-PPP solutions are compared to GPS-only and combined GPS/GLONASS single-frequency PPP solutions. The results indicate that the positioning performance is significantly improved by integrating multi-constellation signals.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boehm, J., Niell, A., Tregoning, P. and Schuh, H. (2006). Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33, L07304, DOI: 10.1029/2005GL025546.Google Scholar
Cai, C., Gao, Y., Pan, L. and Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56(1), 133143, DOI: 10.1016/j.asr.2015.04.001.CrossRefGoogle Scholar
Cai, C., Liu, Z. and Luo, X. (2013). Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations. Journal of Navigation, 66(3), 417434, DOI: 10.1017/S0373463313000039.Google Scholar
Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E. and Elgered, G. (1985). Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20(6), 15931607, DOI: 10.1029/RS020i006p01593.Google Scholar
Gerdan, G.P. (1995). A comparison of four methods of weighting double difference pseudorange measurements. The Australian Surveyor, 40(4), 6066, DOI: 10.1080/00050334.1995.10558564.CrossRefGoogle Scholar
Ghoddousi-Fard, R. and Dare, P. (2006). Online GPS processing services: an initial study. GPS Solutions, 10(1), 1220, DOI: 10.1007/s10291-005-0147-5.CrossRefGoogle Scholar
Guo, F., Zhang, X. and Wang, J. (2015). Timing group delay and differential code bias corrections for BeiDou positioning. Journal of Geodesy, 89(5), 427445, DOI: 10.1007/s00190-015-0788-2.Google Scholar
Héroux, P. and Kouba, J. (1995). GPS precise point positioning with a difference. In: Geomatics '95, Ottawa, Ontario, Canada, June 13–15, 1995.Google Scholar
Hauschild, A., Montenbruck, O., Sleewaegen, J.M., Huisman, L. and Teunissen, P.J.G. (2012). Characterization of Compass M-1 signals. GPS Solutions, 16(1), 117126, DOI: 10.1007/s10291-011-0210-3.Google Scholar
Kouba, J. and Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 1228, DOI: 10.1007/PL00012883.CrossRefGoogle Scholar
Le, A.Q. and Tiberius, C. (2007). Single-frequency precise point positioning with optimal filtering. GPS Solutions, 11(1), 6169, DOI: 10.1007/s10291-006-0033-9.Google Scholar
Li, X., Zhang, X. and Ge, M. (2011). Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. Journal of Geodesy, 85(3), 151158, DOI: 10.1007/s00190-010-0424-0.CrossRefGoogle Scholar
Li, X., Ge, M., Zhang, H. and Wickert, J. (2013a). A method for improving uncalibrated phase delay estimation and ambiguity-?xing in real-time precise point positioning. Journal of Geodesy, 87(5), 405416, DOI: 10.1007/s00190-013-0611-x.CrossRefGoogle Scholar
Li, X., Ge, M., Zhang, H., Nischan, T. and Wickert, J. (2013b). The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS. Advances in Space Research, 51(6), 10081018, DOI: 10.1016/j.asr.2012.06.025.Google Scholar
Li, X., Zhang, X., Ren, X., Fritsche, M., Wickert, J. and Schuh, H. (2015a). Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, 5, 8328, DOI: 10.1038/srep08328.Google Scholar
Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J. and Schuh, H. (2015b). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), 607635, DOI: 10.1007/s00190-015-0802-8.CrossRefGoogle Scholar
Montenbruck, O. (2003). Kinematic GPS positioning of LEO satellites using ionosphere-free single frequency measurements. Aerospace Science and Technology, 7(5), 396405, DOI: 10.1016/S1270-9638(03)00034-8.Google Scholar
Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P. and Nakamura, S. (2013). Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2), 211222, DOI: 10.1007/s10291-012-0272-x.Google Scholar
Øvstedal, O. (2002). Absolute positioning with single-frequency GPS receivers. GPS Solutions, 5(4), 3344, DOI: 10.1007/PL00012910.Google Scholar
Pan, L., Cai, C., Santerre, R. and Zhu, J. (2014). Combined GPS/GLONASS precise point positioning with fixed GPS ambiguities. Sensors, 14(9), 1753017547, DOI: 10.3390/s140917530.Google Scholar
Rizos, C., Montenbruck, O., Weber, R., Weber, G., Neilan, R. and Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. Proceedings of the ION 2013 Pacific PNT Meeting (ION-PNT-2013), April 23–25, 2013, Honolulu, Hawaii, USA, 289–295.Google Scholar
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, American Geophysics Union, Geophys. Monogr. Ser., 15, 247251.Google Scholar
Steigenberger, P., Hugentobler, U., Loyer, S., Perosanz, F., Prange, L., Dach, R., Uhlemann, M., Gendt, G. and Montenbruck, O. (2015). Galileo orbit and clock quality of the IGS multi-GNSS experiment. Advances in Space Research, 55(1), 269281, DOI: 10.1016/j.asr.2014.06.030.Google Scholar
Sterle, O., Stopar, B. and Prešeren, P.P. (2015). Single-frequency precise point positioning: an analytical approach. Journal of Geodesy, 89(8), 793810, DOI: 10.1007/s00190-015-0816-2.Google Scholar
Wanninger, L. and Beer, S. (2015). BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19(4), 639648, DOI: 10.1007/s10291-014-0423-3.Google Scholar
Yunck, T.P. (1996). Orbit determination. In: Parkinson, B.W., Spilker, J.J. (eds). Global positioning system – theory and applications. AIAA, Washington D.C., USA.Google Scholar
Zhao, Q., Guo, J., Li, M., Qu, L., Hu, Z., Shi, C. and Liu, J. (2013). Initial results of precise orbit and clock determination for COMPASS navigation satellite system. Journal of Geodesy, 87(5), 475486, DOI: 10.1007/s00190-013-0622-7.Google Scholar
Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M. and Webb, F.H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3), 50055017, DOI: 10.1029/96JB03860.Google Scholar