Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T02:16:52.877Z Has data issue: false hasContentIssue false

On Generalised Single-Heading Navigation

Published online by Cambridge University Press:  10 July 2020

Nicoleta Aldea
Affiliation:
(Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Braşov, Romania)
Piotr Kopacz*
Affiliation:
(Faculty of Navigation, Gdynia Maritime University, Gdynia, Poland)
*

Abstract

Introducing the notion of a pseudoloxodrome, we generalise a single-heading navigation to conformally flat Riemannian manifolds, under the action of a perturbing vector field (wind, current) of arbitrary force. The findings are applied to time-optimal navigation with the use of the Euler–Lagrange equations. We refer to the Zermelo navigation problem admitting space and time dependence of both a perturbation and a ship's speed. The necessary conditions for single-heading time-optimal navigation are obtained and the pseudoloxodromes of minimum and maximum time are discussed. Furthermore, we describe winds which yield the pseudoloxodromic and loxodromic time extremals. Our research is also illustrated with the examples in dimension two emphasising the single-heading solutions among the time-optimal trajectories in the presence of some space-dependent winds.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrachev, A. A. and Sachkov, Y. L. (2004). Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences Vol. 87. Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Aldea, N. and Kopacz, P. (2017a). Generalized Zermelo navigation on Hermitian manifolds under mild wind. Differential Geometry and its Applications, 54, 325343.CrossRefGoogle Scholar
Aldea, N. and Kopacz, P. (2017b). Generalized Zermelo navigation on Hermitian manifolds with a critical wind. Results in Mathematics, 72, 21652180.CrossRefGoogle Scholar
Aldea, N. and Kopacz, P. (2019a). Time-extremal navigation in arbitrary winds on conformally flat Riemannian manifolds. Manuscript (submitted).CrossRefGoogle Scholar
Aldea, N. and Kopacz, P. (2019b). Generalized loxodromes with application to time-optimal navigation in arbitrary wind. Manuscript (submitted).Google Scholar
Aldea, N. and Kopacz, P. (2020). Time-optimal navigation in arbitrary winds. Annual Reviews in Control, 49, 164172.CrossRefGoogle Scholar
Arrow, K. J. (1949). On the use of winds in flight planning. Journal of Meteorology, 6, 150159.2.0.CO;2>CrossRefGoogle Scholar
Bao, D., Robles, C. and Shen, Z. (2004). Zermelo navigation on Riemannian manifolds. Journal of Differential Geometry, 66, 377435.CrossRefGoogle Scholar
Bijlsma, S. J. (2001). A computational method for the solution of optimal control problems in ship routing. Navigation: Journal of the Institute of Navigation, 48, 145154.CrossRefGoogle Scholar
Bijlsma, S. J. (2009). Optimal aircraft routing in general wind fields. Journal of Guidance, Control, and Dynamics, 32, 10251029.CrossRefGoogle Scholar
Bijlsma, S. J. (2010). Optimal ship routing with ocean current included. Journal of Navigation, 63, 565568.CrossRefGoogle Scholar
Brody, D. C. and Meier, D. M. (2015). Solution to the quantum Zermelo navigation problem. Physical Review Letters, 114, 100502.CrossRefGoogle ScholarPubMed
Brody, D. C., Gibbons, G. W. and Meier, D. M. (2015). Time-optimal navigation through quantum wind. New Journal of Physics, 17, 033048.CrossRefGoogle Scholar
Burns, J. A. (2013). Introduction to the Calculus of Variations and Control with Modern Applications. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press.CrossRefGoogle Scholar
Caponio, E., Javaloyes, M. A. and Sánchez, M. (2015). Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes, 1407.5494 [math.DG].Google Scholar
Carathéodory, C. (1935). Calculus of Variations and Partial Differential Equations of the First Order. Providence, Rhode Island and Berlin: AMS, Chelsea Publishing (reprint 2008).Google Scholar
Catino, G. (2016). On conformally flat manifolds with constant positive scalar curvature. Proceedings of the American Mathematical Society, 144, 26272634.CrossRefGoogle Scholar
Chapman, J. W., Klaassen, R. H. G., Drake, V. A., Fossette, S., Hays, G. C., Metcalfe, J. D., Reynolds, A. M., Reynolds, D. R. and Alerstam, T. (2011). Animal orientation strategies for movement in flows. Current Biology, 21, 861870.CrossRefGoogle ScholarPubMed
Chapman, J. W., Nilsson, C., Lim, K. S., Bäckman, J., Reynolds, Don R. and Alerstam, T. (2015). Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. The Journal of Animal Ecology, 85, 115124.CrossRefGoogle Scholar
Chern, S. -S. and Shen, Z. (2005). Riemann-Finsler Geometry. Nankai Tracts in Mathematics. River Edge (NJ), London, Singapore: World Scientific.CrossRefGoogle Scholar
De Jong, H. M. (1956). Theoretical Aspects of Aeronavigation and its Application in Aviation Meteorology. Mededelingen en Verhandelingen Vol. 64. s-Gravenhage: American Mathematical Society, Chelsea Publishing.Google Scholar
De Jong, H. M. (1974). Optimal Track Selection and 3-Dimensional Flight Planning. Theory and Practice of the Optimization problem in Air Navigation under Space-Time Varying Meteorological Conditions. Mededelingen en verhandelingen Vol. 93. Koninklijk Nederlands Meterologisch Instituut. Staatsdrukkerij's-Gravenhage.Google Scholar
De Mira Fernandes, A. (1932). Sul problema brachistocrono di Zermelo. Rendiconti della Reale Accademia dei Lincei, XV, 4752.Google Scholar
Earle, M. A. (2006). Sphere to spheroid comparisons. Journal of Navigation, 59, 491496.CrossRefGoogle Scholar
Hays, G. C., Christensen, A., Fossette, S., Schofield, G., Talbot, J. and Mariani, P. (2014). Route optimisation and solving Zermelo's navigation problem during long distance migration in cross flows. Ecology Letters, 17, 137143.CrossRefGoogle ScholarPubMed
Hull, D. G. (2009). Optimal Control Theory for applications. Mechanical Engineering Series. New York: Springer.Google Scholar
Jardin, M. R. and Bryson, A. E. Jr. (2012). Methods for computing minimum-time paths in strong winds. Journal of Guidance, Control, and Dynamics, 35, 165171.CrossRefGoogle Scholar
Javaloyes, M. A. and Vitório, H. (2018). Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind. Houston Journal of Mathematics, 44, 11471179.Google Scholar
Kopacz, P. (2017a). Application of planar Randers geodesics with river-type perturbation in search models. Applied Mathematical Modelling, 49, 531553.CrossRefGoogle Scholar
Kopacz, P. (2017b). A note on generalization of Zermelo navigation problem on Riemannian manifolds with strong perturbation. Analele Stiintifice ale Universitatii Ovidius Constanta-Matematic, XXV, 107123.CrossRefGoogle Scholar
Kopacz, P. (2018a). A note on time-optimal paths on perturbed spheroid. Journal of Geometric Mechanics, 10, 139172.CrossRefGoogle Scholar
Kopacz, P. (2018b). Zermelo navigation problem in geometric structures. Ph.D. thesis, Jagiellonian University, Faculty of Mathematics and Computer Science, Kraków.Google Scholar
Kopacz, P. (2019). On generalization of Zermelo navigation problem on Riemannian manifolds. International Journal of Geometric Methods in Modern Physics, 16, 1950058.CrossRefGoogle Scholar
Kos, S., Vranić, D. and Zec, D. (1999). Differential equation of a loxodrome on a sphere. Journal of Navigation, 52, 418420.CrossRefGoogle Scholar
Krupczynski, P. and Schuster, S. (2008). Fruit-catching fish tune their fast starts to compensate for drift. Current Biology, 18, 19611965.CrossRefGoogle ScholarPubMed
Levi-Civita, T. (1931). Über Zermelo's Luftfahrtproblem. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 11, 314322.CrossRefGoogle Scholar
Li, B., Xu, Ch., Teo, K. L. and Chu, J. (2013). Time optimal Zermelo's navigation problem with moving and fixed obstacles. Applied Mathematics and Computation, 224, 866875.CrossRefGoogle Scholar
Marchidan, A. and Bakolas, E. (2016). Numerical techniques for minimum-time routing on sphere with realistic winds. Journal of Guidance, Control, and Dynamics, 39, 188193.CrossRefGoogle Scholar
McLaren, J. D., Shamoun-Baranes, J., Dokter, A. M., Klaassen, R. H. G. and Bouten, W. (2014). Optimal orientation in flows: providing a benchmark for animal movement strategies. Journal of the Royal Society, Interface/the Royal Society, 99, 111.Google Scholar
McLaren, J. D., Shamoun-Baranes, J., Camphuysen, C. J. and Bouten, W. (2016). Directed flight and optimal airspeeds: Homeward-bound gulls react flexibly to wind yet fly slower than predicted. Journal of Avian Biology, 4, 476490.CrossRefGoogle Scholar
Norris, A. (2010). Integrated Bridge Systems Vol 2. ECDIS and Positioning. Fifth in the Series of Maritime Futures. London: The Nautical Institute.Google Scholar
Paláček, R. and Krupková, O. (2012). On the Zermelo problem in Riemannian manifolds. Balkan Journal of Geometry and Its Applications, 17, 7781.Google Scholar
Pallikaris, A. and Latsas, G. (2012). New algorithm for great elliptic sailing (GES). Journal of Navigation, 62, 493507.CrossRefGoogle Scholar
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko, E. F. (1962). The Mathematical Theory of Optimal Processes. New York: Interscience.Google Scholar
Techy, L. (2011). Optimal navigation in a planar time-varying point-symmetric flow-field. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, 7325–7330.CrossRefGoogle Scholar
Techy, L. and Woolsey, C. A. (2009). Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. Journal of Guidance, Control, and Dynamics, 32, 17361746.CrossRefGoogle Scholar
Tseng, W.-K., Earle, M. A. and Guo, J.-L. (2012). Direct and inverse solutions with geodetic latitude in terms of longitude for rhumb line sailing. Journal of Navigation, 65, 549559.CrossRefGoogle Scholar
Weintrit, A. and Kopacz, P. (2011). A novel approach to loxodrome (rhumb line), orthodrome (great circle) and geodesic line in ECDIS and navigation in general. In: Weintrit, A., Neumann, T.(eds.). Methods and Algorithms in Navigation. Boca Raton, London, New York, Leiden: CRC Press Taylor & Francis Group, 123–132.CrossRefGoogle Scholar
Weintrit, A. and Kopacz, P. (2012). Computational algorithms implemented in marine navigation electronic systems. In: Mikulski, J. (ed.). Telematics in the Transport Environment. TST 2012. Communications in Computer and Information Science Vol. 329. Berlin, Heidelberg: Springer, 148158.Google Scholar
Yoshikawa, R. and Sabau, S. V. (2013). Kropina metrics and Zermelo navigation on Riemannian manifolds. Geometriae Dedicata, 171, 119148.CrossRefGoogle Scholar
Zermelo, E. (1930). Über die Navigation in der Luft als Problem der Variationsrechnung. Jahresbericht der Deutschen Mathematiker-Vereinigung, 89, 4448.Google Scholar
Zermelo, E. (1931). Über das Navigationsproblem bei ruhender oder veränderlicher Windverteilung. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 11, 114124.CrossRefGoogle Scholar