Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T19:23:11.601Z Has data issue: false hasContentIssue false

Ionospheric correction of S-band tracking radar data using NavIC S-band signals in missile test range applications

Published online by Cambridge University Press:  05 April 2023

Mrinal Goswami
Affiliation:
Integrated Test Range, Defence R&D Organization, Chandipur, Odisha, India
Atanu Santra
Affiliation:
Department of Physics, The University of Burdwan, Golapbag, Burdwan, India
Sukabya Dan
Affiliation:
Department of Physics, The University of Burdwan, Golapbag, Burdwan, India
Rowdra Ghatak
Affiliation:
Department of Electronics and Communication Engineering, National Institute of Technology Durgapur, Durgapur, India
Anindya Bose*
Affiliation:
Department of Physics, The University of Burdwan, Golapbag, Burdwan, India
*
*Corresponding author. E-mail: [email protected]

Abstract

In missile test ranges, complex missions demand precise trajectory generated by radar. Both the radar and Global Navigation Satellite System (GNSS) signals are affected by atmospheric effects, degrading their accuracy and performance. The Indian Regional Navigation Satellite System/Navigation with Indian Constellation (IRNSS/NavIC) transmits signals in the S-band together with the L-band. This paper presents a novel experimental technique to improve the tracking accuracy of S-band radars using the concurrent NavIC S-band signal. The ionospheric delay using the NavIC S-band signal is calculated first, and the results are used to improve the trajectory data of simultaneously operating S-band radars. This is a unique application of the NavIC S-band signals apart from its conventional usage. During a launch mission, for low elevation angles, the ionospheric error is found to be ~130 m while at higher elevation angles the error values are found to be ~1–3 m. The concept is validated using data from a missile test mission. This report on the use of S-band GNSS signals for the correction of S-band radar range data offers a clear advantage of simplicity and accuracy.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akala, A. O., Doherty, P. H., Valladares, C. E., Carrano, C. S. and Sheehan, R. (2011). Statistics of GPS scintillations over South America at three levels of solar activity. Radio Science, 46(5), 116. doi: 10.1029/2011rs004678CrossRefGoogle Scholar
Andrei, C. O., Chen, R., Kuusniemi, H., Hernandez-Pajares, M., Juan, J. M. and Salazar, D. (2009). Ionosphere Effect Mitigation for Single-Frequency Precise Point Positioning. Proceedings of the 22nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2009), 2508–2517.Google Scholar
Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S. and Shukla, A. K. (2017). Study of Temporal Variation of Vertical TEC Using NavIC Data. 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT), Dehradun, India. doi:10.1109/ICETCCT.2017.8280317.CrossRefGoogle Scholar
Bhardwaj, S. C., Vidyarthi, A., Jassal, B. S. and Sukla, A. K. (2020). An Assessment of Ionospheric Delay Correction at L5 and S1 Frequencies for NavIC Satellite System. 2020 Global Conference on Wireless and Optical Technologies (GCWOT), Malaga, Spain. doi: 10.1109/GCWOT49901.2020.9391601CrossRefGoogle Scholar
Dan, S., Santra, A., Mahato, S. and Bose, A. (2020). NavIC performance over the service region: Availability and solution quality. Sadhana, 45(144), 17. doi:10.1007/s12046-020-01375-5CrossRefGoogle Scholar
Dasgupta, A., Paul, A. and Das, A. (2007). Ionospheric total electron (TEC) studies with GPS in the equatorial region. Indian Journal of Radio and Space Physics, 36(4), 278284.Google Scholar
Datta-Barua, S., Doherty, P. H., Delay, S. H., Dehel, T. and Klobuchar, J. A. (2003). Ionospheric Scintillation Effects on Single and Dual Frequency GPS Positioning. Proceedings of ION GPS/GNSS. Portland, OR: Institute of Navigation, 336346.Google Scholar
Department of Space, Indian Space Research Organization. (2020). List of Navigation Satellites. https://www.isro.gov.in/spacecraft/list-of-navigation-satellites. Accessed January 2020.Google Scholar
Desai, M. and Shah, S. (2019). Estimation of ionospheric delay of NavIC/IRNSS signals by using Taylor series expansion. Journal of Space Weather Space Climate, 9, A23. doi:10.1051/swsc/2019023CrossRefGoogle Scholar
Desai, M. and Shah, S. (2020). A local multivariate polynomial regression approach for ionospheric delay estimation of single frequency NavIC receiver. SN Applied Sciences, 2(9), 113. doi:10.1007/s42452-020-03250-8CrossRefGoogle Scholar
Dey, A., Joshi, L. M., Chhibba, R. and Sharma, N. (2021). A study of ionospheric effects on IRNSS/NavIC positioning at equatorial latitudes. Advances in Space Research, 68(12), 48724883. doi:10.1016/j.asr.2020.09.038CrossRefGoogle Scholar
Goswami, S., Paul, K. S. and Paul, A. (2017). Assessment of GPS multi frequency signal characteristics during periods of ionospheric scintillations from an anomaly crest location. Radio Science, 52(9), 12141222. doi:10.1002/2017rs006295CrossRefGoogle Scholar
Hunt, S. M., Close, S., Coster, A. J., Stevens, E., Schuett, L. M. and Vardaro, A. (2000). Equatorial atmospheric and ionospheric modeling at Kwajalein missile range. Lincoln Laboratory Journal, 12(1), 4564.Google Scholar
Hunt, S. M., Rich, F. J. and Ginet, G. P. (2012). Ionospheric science at the Reagan test site. Lincoln Laboratory Journal, 19, 89101.Google Scholar
ISRO. (2017). Indian Regional Navigation Satellite System Signal in Space ICD for Standard Positioning Service. Bangalore: ISRO.Google Scholar
ITU Recommendation ITU-R 5.531.12. (2013). Ionospheric propagation data and prediction methods required for the design Navan of satellite services and systems.Google Scholar
Jin, S., Gao, C., Yuan, L., Guo, P., Calabia, A., Ruan, H. and Luo, P. (2021). Long-term variations of plasmaspheric total electron content from topside GPS observations on LEO satellites. Remote Sensing, 13(4), 545. doi:10.3390/rs13040545CrossRefGoogle Scholar
Jin, S., Wang, Q. and Dardanelli, G. (2022). A review on multi-GNSS for earth observation and emerging applications. Remote Sensing, 14(16), 3930. doi:10.3390/rs14163930CrossRefGoogle Scholar
Klobuchar, J. A. (1987). Ionospheric time delay algorithm for single frequency GPS users. IEEE Transactions on Aerospace and Electronic Systems, 3, 325331. doi:10.1109/taes.1987.310829CrossRefGoogle Scholar
Klobuchar, J. A. (1996). Ionospheric effects on GPS. Global Positioning System: Theory and Application. doi:10.2514/5.9781600866388.0485.0515Google Scholar
Mannucci, A., Wilson, B., Yuan, D., Ho, C., Lindqwister, U. and Runge, T. (1998). A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33(3), 567582. doi:10.1029/97rs02707CrossRefGoogle Scholar
Misra, P. and Enge, P. (2006). Global Positioning Systems: Signals, Measurements and Performance. 2nd ed. Lincoln, MA: 2006 Ganga-Jamuna Press.Google Scholar
Nava, B., Coisson, P. and Radicella, S. M. (2008). A new version of the NeQuick ionospheric electron density model. Journal of Atmospheric and Solar Terrestrial Physics, 70(15), 18561862. doi:10.1016/j.jastp.2008.01.015CrossRefGoogle Scholar
Petrie, E. J., Hernández-Pajares, M., Spalla, P., Moore, P. and King, M. A. (2011). A review of higher order ionospheric refraction effects on dual frequency GPS. Surveys in Geophysics, 32(3), 197253. doi:10.1007/s10712-010-9105-zCrossRefGoogle Scholar
Schmid, P. E. (1966). Atmospheric Tracking Errors at S-and C-Band Frequencies. Washington, DC: National Aeronautics and Space Administration.Google Scholar
Sharma, A. K., Gurav, O. B., Bose, A., Gaikwad, H. P., Chavan, G. A., Santra, A., Kamble, S. S. and Vhatkar, R. S. (2019). Potential of IRNSS/NavIC l5 signals for ionospheric studies. Advances in Space Research, 63(10), 31313138. doi: 10.1016/j.asr.2019.01.029CrossRefGoogle Scholar
Smith, R. W. (1987). Department of Defense World Geodetic System 1984: Its Definition and Relationships With Local Geodetic Systems. Bethesda, USA: Defense Mapping Agency.Google Scholar
Su, K., Jin, S. and Hoque, M. M. (2019). Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote Sensing, 11(2), 171. doi: 10.3390/rs11020171CrossRefGoogle Scholar
Teunissen, P. and Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems. Springer International Publishing. doi:10.1007/978-3-319-42928-1Google Scholar
Varaprasad, R., Bhaskara Rao, S. V. and Rao, V. S. (2012). Effect of troposphere and ionosphere on C-band radar track data and correction of tracking parameters. Defence Science Journal, 62(6), 420426. doi:10.14429/dsj.62.1160.0CrossRefGoogle Scholar
Venkata Ratnam, D., Raghavendra Vishnu, T. and Sree Harsha, P. B. (2018). Ionospheric gradients estimation and analysis of S-band navigation signals for NAVIC system. IEEE Access, 6, 6695466962. doi:10.1109/ACCESS.2018.2876795CrossRefGoogle Scholar
Yuan, L., Jin, S. and Hoque, M. (2020). Estimation of LEO-GPS receiver differential code bias based on inequality constrained least square and multi-layer mapping function. GPS Solutions, 24(2), 112. doi:10.1007/s10291-020-0970-8CrossRefGoogle Scholar