Published online by Cambridge University Press: 12 July 2018
Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.