Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T01:45:20.831Z Has data issue: false hasContentIssue false

Energy optimised D* AUV path planning with obstacle avoidance and ocean current environment

Published online by Cambridge University Press:  22 March 2022

Bing Sun*
Affiliation:
Shanghai Engineering Research Center of Intelligent Maritime Search & Rescue and Underwater Vehicles, Shanghai Maritime University, Shanghai, China
Wei Zhang
Affiliation:
School of Electrical Engineering, Shanghai Dianji University, Shanghai, China
Shiqi Li
Affiliation:
Shanghai Engineering Research Center of Intelligent Maritime Search & Rescue and Underwater Vehicles, Shanghai Maritime University, Shanghai, China
Xixi Zhu
Affiliation:
Shanghai Engineering Research Center of Intelligent Maritime Search & Rescue and Underwater Vehicles, Shanghai Maritime University, Shanghai, China
*
*Corresponding author. E-mail: hmsunbing@163.com

Abstract

For the path planning of autonomous underwater vehicles (AUVs) in the ocean environment, in addition to the planned path length and safe obstacle avoidance, it is also necessary to pay attention to the impact of ocean currents on the planned path. Therefore, this paper improves the original D* algorithm, and adds the obstacle cost item and the steering angle cost item as constraints on the basis of the original cost function, thus ensuring the navigation safety of the AUV. Considering that ocean currents have a greater impact on the energy consumption of AUVs, this paper establishes a cost model for the impact of ocean currents on AUV energy consumption and applies it to the D* path planning algorithm, so that AUVs can use ocean currents to reduce energy consumption, which can be seen through simulation experiments. The simulation results show that the improvement of the algorithm can plan an optimal energy consumption path.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carreras, M., Hernández, J. D., Vidal, E., Palomeras, N., Ribas, D. and Ridao, P. (2018). Sparus II AUV—a hovering vehicle for seabed inspection. IEEE Journal of Oceanic Engineering, 43, 344355. doi:10.1109/JOE.2018.2792278CrossRefGoogle Scholar
Chen, M. and Zhu, D. (2020). Optimal time-consuming path planning for autonomous underwater vehicles based on a dynamic neural network model in ocean current environments. IEEE Transactions on Vehicular Technology, 69, 1440114412. doi:10.1109/TVT.2020.3034628CrossRefGoogle Scholar
Dakulović, M. and Petrović, I. (2011). Two-way d* algorithm for path planning and replanning. Robotics and Autonomous Systems, 59, 329342. Special Issue ECMR 2009. doi:10.1016/j.robot.2011.02.007CrossRefGoogle Scholar
Dolgov, D. A., Thrun, S., Montemerlo, M. and Diebel, J. (2010). Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research, 29, 485501. doi:10.1177/0278364909359210CrossRefGoogle Scholar
Fu, B., Chen, L., Zhou, Y., Zheng, D., Wei, Z., Dai, J. and Pan, H. (2018). An improved a* algorithm for the industrial robot path planning with high success rate and short length. Robotics and Autonomous Systems, 106, 2637. doi:10.1016/j.robot.2018.04.007CrossRefGoogle Scholar
Garau, B., Alvarez, A. and Oliver, G. (2005). Path Planning of Autonomous Underwater Vehicles in Current Fields with Complex Spatial Variability: An a* Approach. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain: IEEE, 194–198. doi:10.1109/ROBOT.2005.1570118CrossRefGoogle Scholar
Huang, H., Huang, P., Zhong, S., Long, T., Wang, S., Qiang, E. and Zhong, Y., He, L. (2019). Dynamic Path Planning Based on Improved D* Algorithms of Gaode Map. In: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China: IEEE, 1121–1124. doi:10.1109/ITNEC.2019.8729438CrossRefGoogle Scholar
Koenig, S. and Likhachev, M. (2005). Fast replanning for navigation in unknown terrain. IEEE Transactions on Robotics, 21, 354363. doi:10.1109/TRO.2004.838026CrossRefGoogle Scholar
Li, J. H., Lee, M. J., Park, S. H. and Kim, J. G. (2012). Real Time Path Planning for a Class of Torpedo-type AUVs in Unknown Environment, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK: IEEE, 1–6. doi:10.1109/AUV.2012.6380728CrossRefGoogle Scholar
Maurović, I., Seder, M., Lenac, K. and Petrović, I. (2018). Path planning for active slam based on the D* algorithm with negative edge weights. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48, 13211331. doi:10.1109/TSMC.2017.2668603CrossRefGoogle Scholar
Niu, H., Lu, Y., Savvaris, A. and Tsourdos, A. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles. Ocean Engineering, 161, 308321. doi:10.1016/j.oceaneng.2018.01.025CrossRefGoogle Scholar
Reyes, N. H., Barczak, A. L. C., Susnjak, T. and Jordan, A. (2017). Fast and Smooth Replanning for Navigation in Partially Unknown Terrain: The Hybrid Fuzzy-D*lite Algorithm, Springer International Publishing, 3141.Google Scholar
Sadiq, A. T. and Hasan, A. H. (2017). Robot Path Planning Based on PSO and D* Algorithmsin Dynamic Environment. In: 2017 International Conference on Current Research in Computer Science and Information Technology (ICCIT), Sulaymaniyah, Iraq: IEEE, 145–150. doi:10.1109/CRCSIT.2017.7965550CrossRefGoogle Scholar
Song, R., Liu, Y. and Bucknall, R. (2017). A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment. Ocean Engineering, 129, 301317. doi:10.1016/j.oceaneng.2016.11.009CrossRefGoogle Scholar
Stentz, A. (1995). The Focussed D* Algorithm for Real-time Replanning. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. Vol. 2. San Francisco, CA: Morgan Kaufmann Publishers Inc., 1652–1659.Google Scholar
Sun, B., Zhu, D. and Yang, S. X. (2018). An optimized fuzzy control algorithm for three-dimensional AUV path planning. International Journal of Fuzzy Systems, 20, 597610. doi:10.1007/s40815-017-0403-1CrossRefGoogle Scholar
Wen, N., Zhang, R., Liu, G. and Wu, J. (2020). Online heuristically planning for relative optimal paths using a stochastic algorithm for USVs. Journal of Navigation, 73, 485508. doi:10.1017/S0373463319000791CrossRefGoogle Scholar
Xiang, G. and Xiang, X. (2021). 3d trajectory optimization of the slender body freely falling through water using cuckoo search algorithm. Ocean Engineering, 235, 109354. doi:10.1016/j.oceaneng.2021.109354CrossRefGoogle Scholar
Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y. and Lammas, A. (2015). A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Engineering, 110, 303313. doi:10.1016/j.oceaneng.2015.10.007CrossRefGoogle Scholar
Zeng, Z., Zhou, H. and Lian, L. (2020). Exploiting ocean energy for improved AUV persistent presence: path planning based on spatiotemporal current forecasts. Journal of Marine Science and Technology, 25, 2647. doi:10.1007/s00773-019-00629-0CrossRefGoogle Scholar
Zhao, W., Shaolong, Y., Xianbo, X., Antonio, V., Nikola, M. and Ðula, N. (2021). Cloud-based mission control of USV fleet: Architecture, implementation and experiments. Control Engineering Practice, 106, 104657. doi:10.1016/j.conengprac.2020.104657Google Scholar
Zhu, D. and Yang, S. X. (2021). Path planning method for unmanned underwater vehicles eliminating effect of currents based on artificial potential field. Journal of Navigation, 74, 955967. doi:10.1017/S0373463321000345CrossRefGoogle Scholar
Zhu, D., Cheng, C. and Sun, B. (2016). An integrated AUV path planning algorithm with ocean current and dynamic obstacles. International Journal of Robotics and Automation, 31, 382389. doi:10.2316/Journal.206.2016.5.206-4570CrossRefGoogle Scholar
Zhu, D., Zhou, B. and Yang, S. X. (2021). A novel algorithm of multi-AUVs task assignment and path planning based on biologically inspired neural network map. IEEE Transactions on Intellitent Vehicles, 6, 333342. doi:10.1109/TIV.2020.3029369CrossRefGoogle Scholar