In this paper, a unified creep-cyclic plasticity theory of endochronic viscoplasticity is established, in which the computations in the cyclic stress-strain responses of fatigue loading and the creep strain responses of general thermal/creep loading histories are integrated.
Based on the relationship of convolutional integral between the relaxation modulus function ρ(Z) and the creep compliance function J(Z), and the given functional form of ρ(Z) obtained from the cyclic hysteresis loop; an explicit functional form of J(Z) can be generated numerically which covers creep response from the primary creep stage to the steady creep stage. As a consequence, the conventional cyclic stress-strain curve, the Bailey-Norton creep law and the power law of steady creep rate are interrelated.
Four experiments of 304 stainless steel at about 0.52 homologous temperature and under constant or variable amplitude loading histories are investigated. The success in the unified computational methodology is demonstrated by the well agreement between the computational results and the experimental data.