Article contents
The Rheology of Blood Flow in a Branched Arterial System with Three-Dimensional Model: A Numerical Study
Published online by Cambridge University Press: 05 May 2011
Abstract
Blood flow rheology is a very complex phenomenon. Hemodynamics owns Newtonian or non-Newtonian characteristic is still debatable. Recently, studies related to blood tend to classify blood as non-Newtonian fluid. In this research, power law, Casson and Carreau which are being the most popular non-Newtonian models are applied to investigate the hemodynamics variables that influence formation of thrombosis and predict damageability to blood cell. The branched arterial system is simplified as T-junction geometry and the computational fluid dynamics software Fluent 6.2 with finite volume method is utilized to analyze the blood flow rheology in cases of continuous and pulsatile flow. The analysis results are compared with that of Newtonian model and give out very interesting hemodynamics predictions for each model. The size of recirculation zone is different from each model that is observed significantly. The wall shear stress of Carreau model gets the highest value, 14% in case of continuous flow and around 17% in pulsatile case bigger than that of Newtonian model. The results of pulsatile flow show that the Newtonian model is closed to power law model while the Casson model is similar to the Carreau model.
- Type
- Technical Note
- Information
- Copyright
- Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2009
References
REFERENCES
- 12
- Cited by