Published online by Cambridge University Press: 05 May 2011
The average settling rate of spherical solid particles, 〈vs〉, under a body force field is studied numerically in decaying homogeneous isotropic turbulent flows generated by the direct numerical simulation of the continuity and Navier-Stokes equations. The increase of the average settling rate, 〈Δvs〉, is maximized when Tp/Tk ≈ 1 and vd/u′ ≈ 0.5, and is of order 0.lu′, which is qualitatively similar to that in stationary turbulence. Here 〈Δvs〉 = 〈vs〉 − vd, Tp is the particle's relaxation time, Tk is the Kolmogorov time scale, vd is the settling rate of particles in still fluid, and u′ is the root mean square of the fluid velocity fluctuation. However, the magnitude of the maximum value of 〈Δvs〉 in decaying turbulence is substantially greater (about 40%) than that in the corresponding stationary turbulence due to the inertia response of particles to turbulence decay. Although 〈Δvs〉/u′ does not reach a stationary state as the flow is evolving, it is a slowly time varying function for the parameters of interest as Tp (≈ Tk when 〈Δvs〉 is maximized) is in general of one order less than the time scale of turbulence decay.