Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T03:30:59.891Z Has data issue: false hasContentIssue false

Measurement and Modelling for the Dispersion Relations of Acoustic Waves Propagating in a Free Piezoelectric Plate

Published online by Cambridge University Press:  05 May 2011

C. H. Yang*
Affiliation:
Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan 33302, R.O.C.
M. F. Huang*
Affiliation:
Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan 33302, R.O.C.
*
*Professor
** Graduate Student
Get access

Abstract

This research is focused in the measurement and modelling of the dispersion relations of Lamb waves propagating in a piezoelectric plate. A theoretical model based on a partial wave analysis is used to provide numerical calculations for the dispersion relations of Lamb waves propagating in an LiNbO3 plate with different propagating directions. The dispersion relations are presented in an innovative image format. A non-contact laser ultrasound technique operated in B-scan mode with the aid of double Fast Fourier transform signal-processing scheme is used to measured multi-mode dispersion realtions. Among all the propagation angles, the measured dispersion curves show good agreement with the theoretical calculations. The Rayleigh wave speeds are extracted from the measured and calculated dispersion curves, showing favorable comparison with classical theory by Campbell.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Gualtieri, J. G., Kosinski, J. A. and Ballato, A., “Piezoelectric Materials for SAW Applications,” IEEE Ultrason. Symp., PP. (1992).Google Scholar
2Josse, F., Shana, Z. A., Radtke, D. E. and Haworth, D. T., “Analysis of Piezoelectric Bulk-Acoustic- Wave Resonators as Detectors in Viscous Conductive Liquids,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 37(5), pp. 359367 (1990).CrossRefGoogle ScholarPubMed
3Joshi, S. G. and Jin, Y., “Application of a Surface-Acoustic-Wave Device for Measurement of Liquid Flow Rate,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 37(5), pp. 474478 (1990).CrossRefGoogle ScholarPubMed
4Kelkar, U. R., Liew, Su-Lin, Shana, Z. A., Haworth, D. T., Grunze, M. and Josse, F., “Applications of Lithium Niobate Acoustic Plate Mode as Sensor for Conductive Liquids,” IEEE 1990 Ultrason. Symp., pp. 285288 (1990).Google Scholar
5Josse, F., Haworth, D. T., Kellar, U. R. and Shana, Z. A., “LiNbO3 Acoustic Plate Mode Sensor for Dilute Ionic Solutions,” Electron. Lett., 26, pp. 834837 (1990).CrossRefGoogle Scholar
6Josse, F., Shana, Z. A., Haworth, D. T., Liew, S. and Grunze, M., “On the Use of ZX-LiNbO3 Acoustic Plate Mode Devices as Detectors for Dilute Electrolytes,” Sensors and Actuators B, 9, pp. 97102 (1992).CrossRefGoogle Scholar
7Josse, F. and Shana, Z. A., “Electrical Surface Perturbation of a Piezoelectric Acoustic Plate Mode by a Conductive Liquid Loading,” IEEE Trans. Ultrason. Ferroelec. Freq. Control, 39(4), pp. 512518 (1992).CrossRefGoogle ScholarPubMed
8Josse, F., Andle, J. C., Vetelino, J. F., Dahint, R. and Grunze, M., “Theoretical and Exprimental Study of Mass Sensitivity of PSAW-APMs on ZX-LiNbO3,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 42(4), pp. 517524 (1995).CrossRefGoogle Scholar
9Sawaguchi, A. and Toda, K., “System for Measuring Sound Velocity in Liquid Using Leaky Lamb Wave Modes 1280 Rot. X-Y Cut LiNbO3 Substrate,” Jpn. J. Appl. Phys., 38(9B), pp. 24022405 (1991).CrossRefGoogle Scholar
10Nomura, T., Yasuda, T. and Furukawa, S., “Humidity Sensor Using Surface Acoustic Waves Propagating along Polymer/LiNbO3 Structures,” IEEE Ultrason. Symp., pp. 417420 (1993).CrossRefGoogle Scholar
11Toda, K. and Mizutani, K., “Substrate Thickness Dependence of SH Wave Propagation Characteristics in Rotated Y-cut X-propagation LiNbO3,” J. Acous. Soc. Am., 79(1), pp. 160163 (1986).CrossRefGoogle Scholar
12Sawaguchi, A. and Toda, K., “Lamb Wave Propagation Characteristics on Water-Loaded LiNbO3 Thin Plate,” Jpn. J. Appl. Phys., 32(5B), pp. 2389––– (1993).Google Scholar
13Toda, K. and Sawaguchi, A., “Propagation Characteristics of Shear-Horizontal Plate Modes on Water-Loaded LiNbO3,” Jpn. J. Appl. Phys., 33(5B), pp. 29492952 (1994).CrossRefGoogle Scholar
14Nayfeh, A. H. and Chien, H. T., “The Influence of Piezoelectricity on Free and Reflected Waves from Fluid-loaded Anisotropic Plates,” J. Acous. Soc. Am., 91(3), pp. 12501261 (1992).CrossRefGoogle Scholar
15Yang, C. H. and Chimenti, D. E., “Guided Plate Waves Propagating in a Piezoelectric Plate Immersed in a Dielectric Fluid, I. Theory,” J. Acous. Soc. Am., 97(4), pp. 21032109 (1995).CrossRefGoogle Scholar
16Yang, C. H. and Chimenti, D. E., “Guided Plate Waves Propagating in a Piezoelectric Plate Immersed in a Dielectric Fluid, II. Experiment,” J. Acous. Soc. Am., 97(4), pp. 21102117 (1995).CrossRefGoogle Scholar
17Kushibiki, J., Takanaga, I., Arakawaand, R. and Sannomiya, T., “Accurate Measurement of the Acoustical Physical Constants of LiNbO3 LiTaO3 Single Crystals,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 46(5), pp. 13151323 (1999).CrossRefGoogle Scholar
18Kushibiki, J., Ohashi, Y. and Ono, Y., “Evaluation and Selection of LiNbO3 and LiTaO3 Substrates for SAW Devices by the LFB Ultrasonic Material Characterization System,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 47, pp. 10681076 (2000).CrossRefGoogle ScholarPubMed
19Degertekin, F. L. and Khuri-Yakub, B. T., “Lamb Wave Excitation by Hertzian Contacts with Applications in NDE,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 44(4), pp. 769779 (1997).CrossRefGoogle Scholar
20Rogers, J. A., Fuchs, M., Banet, M. J., Hanselman, J. B., Logan, R. and Nelson, K. A., “Optical System for Rapid Materials Characterization with the Transient Grating Technique: Application to Nondestructive Evaluation of Thin Films Use in Microelectronics,” Appl. Phys. Lett., 71(2), pp. 225227 (1997).CrossRefGoogle Scholar
21Auseel, J. D. and Monchaline, J.-P., “Precision Laser Ultrasonic Velocity Measurement and Elastic Constant Determination,” Ultrasonics, 27, pp. 165177 (1989).CrossRefGoogle Scholar
22Wisenhardt, C., Jacobs, L. J. and Qu, J., “Application of Laser Ultrasonics to Develop Dispersion Curves for Elastic Plates,” J. Appl. Mech., pp. 10431045 (1999).CrossRefGoogle Scholar
23Auld, B. A., Acoustic Fields and Waves in Solids Krieger, Robert E., ed., Malabar, Florida (1990).Google Scholar
24Campbell, J. J. and Jones, W. R., “A Method for Estimating Optimal Crystal Cuts and Propagation Directions for Excitation of Piezoelectric SurfaceWaves,” IEEE Trans. Sonics Ultras., SU-15(4), pp. 209217 (1968).CrossRefGoogle Scholar