Published online by Cambridge University Press: 20 December 2012
Analytical solutions are presented for time periodic EOF flow of linear viscoelastic fluids through a cylindrical micro-pipe. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the linearized Poisson-Boltzmann equation, together with the Cauchy momentum equation and the general Maxwell constitutive equation considering the depletion effect produced by the interaction between macro-molecules of the Maxwell fluid and the channel surface. The overall flow is divided into depletion layer and bulk flow outside of depletion layer. The velocity expressions of these two layers were obtained, respectively. By numerical computations, the influences of the periodic EOF electric oscillating Reynolds number Re, Deborah number De, depletion layer thickness δ and the viscosity ratio γ of Maxwell to Newtonian fluids on velocity profile are presented. For a prescribed De, the increasing Re will cause large changes of the EOF velocity with decreasing velocity magnitude. For a given Re, large De gives large EOF velocity magnitude. Increasing γ will lead to larger velocity amplitude for a given lower Re. However, at higher Re, the velocity amplitude decreases with the viscosity ratio γ, especially within the depletion layer. In addition, large depletion layer thickness gives small EOF velocity magnitude for fixed Re and De. Finally, the influence of De on energy dissipation is studied. These results provide a detail insight of the flow characteristic of this flow configuration.