Published online by Cambridge University Press: 03 January 2019
The finite element method (FEM) was used to study the elastic-plastic contact in the coating systems with interlayer. The results reveal that with the increase of interlayer thickness, the maximum shear stress of coating/interlayer and interlayer/substrate interfaces decreases. Moreover, the sharply changed shear stress between the interfaces of coating/interlayer and interlayer/substrate decreases too. There is no further decrease when interlayer thickness increase to 0.04 mm and above. With the increasing of interlayer elastic modulus, the shear stress of coating/interlayer interface decreases while the shear stress of interlayer/substrate interface increases. Meanwhile, the higher elastic modulus leads to the intensive tensile stress concentration on the interface of coating/interlayer. Hence, the interlayer with appropriate elastic modulus not only reduces the shear stress of coating/interlayer and interlayer/substrate interfaces but also decreases the tensile stress of coating/interlayer interface. The mechanical properties of coating systems were investigated with different interlayer yield strength. The effective hardness and elastic modulus increase with the increase of interlayer yield strength, which is good to protect the substrate from the deformation. In addition, higher indentation load can lead to the decrease of effective hardness and elastic modulus.