Nanostructured multiphase metallic materials present extraordinary properties, such as high strength, enhanced fatigue and radiation resistance, and thermal stability, compared to conventional bulk metallic materials. Previous research studies have shown that their deformation and fracture behavior are dominated by defect interactions at internal interfaces. In situ straining, including nanoindentation, compression, and tension, in a transmission electron microscope (TEM) has emerged as a powerful tool to investigate the physics of defect–interface interactions at the nano-scale and even atomic scale. The mechanistic insights gained from these experiments coupled with dislocation theory and atomistic modeling has helped develop a fundamental understanding of the mechanical properties. In this article, through some recent investigations on observing dislocation and interface activities, crack propagation, and nanopillar compression, we present current progress in utilizing in situ TEM straining to examine interface-dominated deformation mechanisms.