Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T21:06:22.493Z Has data issue: false hasContentIssue false

YVO4: RE3+ (RE = Eu, Sm, Dy, Er) nanophosphors: Facile hydrothermal synthesis, microstructure, and photoluminescence

Published online by Cambridge University Press:  31 January 2011

Bing Yan*
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
Jianhua Wu
Affiliation:
Department of Chemistry, Tongji University, Shanghai 200092, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

YVO4: 10%RE3+ (RE = Eu, Sm, Dy, Er) nanophosphors have been synthesized by a facile modified hydrothermal technology to obtain the high purity. The key procedure for this hydrothermal process is the adding order of precursors, in which excess sodium vanadate should be added in the solution of rare earth nitrates. The microstructure (crystal phase, morphology, particle size) of these phosphors are characterized by x-ray powder diffraction, scanning electron microscope, and transmission electron microscope, which indicates that there are some cube-like crystals with tetragonal zircon structure and the average particle size is approximately 40 nm. The luminescent behaviors for the four rare earth ion-activated YVO4 nanophosphors have been studied, and, for YVO4: 10%Eu3+ nanophosphors in particular, it is found that a different hydrothermal process influences the phase composition, microstructure, and photoluminescence. This result suggests that the hydrothermal synthesis process (by adding sodium vanadate to the solution of rare earth nitrates) is favorable for YVO4 nanophosphor to obtain pure phase, small particle size, long luminescent lifetime, and high luminescence quantum efficiency.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Burland, D.M., Miller, R.D., and Walsh, C.A.: 2Nd-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31 (1994).CrossRefGoogle Scholar
2.Beecroft, L.L. and Ober, C.K.: Nanocomposite materials for optical applications. Chem. Mater. 9, 1302 (1997).CrossRefGoogle Scholar
3.Blasse, G. and Grabmeter, B.C.: Luminescent Materials (Springer Verlag, Berlin, 1994).CrossRefGoogle Scholar
4.Hesselink, L., Orlov, S.S., Liu, A., Akella, A., Lande, D., and Neurgaonkar, R.R.: Photorefractive materials for nonvolatile volume holographic data storage. Science 282, 1089 (1998).CrossRefGoogle ScholarPubMed
5.Nirwan, F.M., Rao, T.K.G., Gupta, P.K., and Pode, R.B.: Studies of defects in YVO4: Pb2+, Eu3+ red phosphor material. Phys. Status Solidi A 198, 447 (2003).CrossRefGoogle Scholar
6.Riwotzki, K. and Haase, M.: Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). J. Phys. Chem. B 102, 10129 (1998).CrossRefGoogle Scholar
7.Yan, B. and Su, X.Q.: In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1-xO4: Eu3+ micron crystalline phosphors. Mater. Sci. Eng., B 116, 196 (2005).CrossRefGoogle Scholar
8.Gerner, P., Kramer, K., and Gudel, H.U.: Broad-band Cr5+-sensitized Er3+ luminescence in YVO4. J. Lumin. 102–103, 112 (2003).CrossRefGoogle Scholar
9.Erdei, S., Ainger, F.W., Ravichandran, D., White, W.B., and Cross, L.E.: Preparation of Eu3+:YVO4 red and Ce3+, Tb3+: LaPO4, green phosphors by hydrolyzed colloid reaction (HCR) technique. Mater. Lett. 30, 389 (1997).CrossRefGoogle Scholar
10.Jagannathan, R.: Eu3+ luminescence in BiSr2V3O11—A potential red phosphor? J. Lumin. 68, 211 (1996).CrossRefGoogle Scholar
11.Zhang, H.J., Wang, J.Y., Wang, C.Q., Zhu, L., Hu, X.B., Meng, X.L., Jiang, M.H., and Chow, Y.T.: A comparative study of crystal growth and laser properties of Nd: YVO4, Nd: GdVO4 and Nd: GdxLa1-xVO4 (x-0.80, 0.60 0.45) crystals. Opt. Mater. 23, 449 (2003).CrossRefGoogle Scholar
12.Huignard, A., Buissette, V., Laurent, G., Gacoin, T., and Boilot, J.P.: Synthesis and characterizations of YVO4: Eu colloids. Chem. Mater. 14, 2264 (2002).CrossRefGoogle Scholar
13.Huignard, A., Buissette, V., Franville, A.C., Gacoin, T., and Boilot, J.P.: Emission processes in YVO4: Eu nanoparticles. J. Phys. Chem. B 107, 6754 (2003).CrossRefGoogle Scholar
14.Su, X.Q. and Yan, B.: In situ co-precipitation synthesis and luminescence of GdVO4: Eu3+ and YxGd1-xVO4: Eu3+ microcrystalline phosphors derived from the assembly of hybrid precursors. J. Alloys Compd. 399, 251 (2005).CrossRefGoogle Scholar
15.Su, X.Q. and Yan, B.: The synthesis and luminescence of YPx V1-xO4: Dy3+ microcrystalline phosphors by in situ co-precipitation composition of hybrid precursors. Mater. Chem. Phys. 93, 552 (2005).CrossRefGoogle Scholar
16.Su, X.Q. and Yan, B.: Matrix-induced synthesis and photoluminescence of M3Ln(VO4)3: RE (M = Ca, Sr, Ba; Ln = Y, Gd; RE = Eu3+, Dy3+, Er3+) phosphors by hybrid precursors. J. Alloys Compd. 421, 273 (2006).CrossRefGoogle Scholar
17.Yan, B. and Su, X.Q.: In situ chemical co-precipitation synthesis of YVO4: RE (RE = Dy3+, Sm3+, Er3+) phosphors by assembling hybrid precursors. J. Non-Cryst. Solids 351, 3542 (2007).Google Scholar
18.Yan, B. and Su, X.Q.: Chemical co-precipitation composition of hybrid precursors to synthesize Y0.5-xDyxLi1.5VO4 microcrystalline phosphors. Mater. Lett. 61, 482 (2007).CrossRefGoogle Scholar
19.Yan, B. and Su, X.Q.: LuVO4: RE3+ (RE = Sm, Eu, Dy, Er) phosphors by in situ chemical precipitation construction of hybrid precursors. Opt. Mater. 29, 547 (2007).CrossRefGoogle Scholar
20.Yan, B. and Su, X.Q.: In situ co-precipitation synthesis and photoluminescence of YxGd1-xVO4: Tm3+ microcrystalline phosphors by hybrid precursors. Opt. Mater. 29, 1866 (2007).CrossRefGoogle Scholar
21.Yu, M., Lin, J., Wang, Z., Fu, J., Wang, S., Zhang, H.J., and Han, Y.C.: Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 14, 2241 (2002).CrossRefGoogle Scholar
22.Zhang, J., Zhang, Z., Tang, Z., Tao, Y., and Long, X.: Luminescent properties of the BaMgAl10O17: Eu2+, M3+ (M = Nd, Er) phosphor in the VUV region. Chem. Mater. 14, 3005 (2002).CrossRefGoogle Scholar
23.Hakuta, Y., Haganuma, T., Sue, K., Adschiri, T., and Arai, K.: Continuous production of phosphor YAG: Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater. Res. Bull. 38, 1257 (2003).CrossRefGoogle Scholar
24.Chen, X.L., Fan, H.Q., and Liu, L.J.: Synthesis and crystallization behavior of lead titanate from oxide precursors by a hydrothermal route. J. Cryst. Growth 284, 434 (2005).CrossRefGoogle Scholar
25.Takeshita, S., Isobe, T., and Niikura, S.: Low-temperature wet chemical synthesis and photoluminescence properties of YVO4: Bi3+, Eu3+ nanophosphors. J. Lumin. 128, 1515 (2008).CrossRefGoogle Scholar
26.Mahapatra, S. and Ramanan, A.: Hydrothermal synthesis and structural study of lanthanide orthovanadates, LnVO4 (Ln = Sm, Gd, Dy and Ho). J. Alloys Compd. 395, 149 (2005).CrossRefGoogle Scholar
27.Yan, B. and Su, X.Q.: In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1-xO4: Eu3+ micron crystalline phosphors. Mater. Sci. Eng., B 116, 196 (2005).CrossRefGoogle Scholar
28.Xiao, X.Z. and Yan, B.: Photoluminescent properties of Eu3+ (Dy3+)-activated YNbxTa1-xO4 and REVTa2O9 (RE = Y, La, Gd) phosphors from the hybrid precursors. Appl. Phys. A 88, 333 (2007).CrossRefGoogle Scholar
29.Morita, M., Iwamura, M., Rau, D., Itoh, M., Ishikawa, Y., and Andoh, N.: Luminescence of metal ion-activated nanophosphor supported by nanoporous sol–gel SiO2 matrices. J. Lumin. 122– 123, 879 (2007).CrossRefGoogle Scholar
30.Su, L.T., Tok, A.I.Y., Boey, F.Y.C., Zhang, X.H., and Woodhead, J.L.: Photoluminescence phenomena of Ce3+-doped Y3Al5O12 nanophosphors. J. Appl. Phys. 102, 083541 (2007).CrossRefGoogle Scholar
31.Zhou, L. and Yan, B.: In situ sol-gel synthesis of nanophosphors M2Y8(SiO4)(6)O-2: Eu3+ (M = Ca, Sr) derived from novel crosslinking reagents as silicon sources. J. Nanosci. Nanotechnol. 8, 1261 (2008).CrossRefGoogle Scholar
32.Gorller-Walrand, C. and Binnemans, K.: Spectral Intensities of f-f Transitions (Elsevier, Amsterdam, 1998).Google Scholar
33.Riseberg, L.A. and Weber, M.J.: Relaxation phenomena in rareearth luminescence, in Progress in Optics (North-Holland, Amsterdam, 1976), p. 91.Google Scholar
34.Weber, M.J.: Multiphonon relaxation of rare-earth ions in yttrium orthoaluminate. Phys. Rev. B 8, 54 (1973).CrossRefGoogle Scholar
35.Riwotzki, K. and Haase, M.: Colloidal YVO4: Eu and YP0.95V0.05O4: Eu nanoparticles: Luminescence and energy transfer processes. J. Phys. Chem. B 105, 12709 (2001).CrossRefGoogle Scholar
36.Dieke, G.H.: Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley Interscience, New York, 1968), p. 142.Google Scholar
37.Meijerink, A. and Wegh, R.T.: VUV spectroscopy of lanthanides: Extending the horizon. Mater. Sci. Forum 315317, 11 (1999).Google Scholar
38.Malta, O.L., Brito, H.F., Menezes, J.F.S., Silva, F.R.G.E., Alves, S., Farias, F.S., and Andrade, A.V.M.: Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate), 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model. J. Lumin. 75, 255 (1997).CrossRefGoogle Scholar
39.Werts, M.H.V., Jukes, R.T.F., and Verhoeven, J.W.: The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 4, 1542 (2002).CrossRefGoogle Scholar
40.Malta, O.L., Santos, M.A. Couto dos, Thompson, L.C., and Ito, N.K.: Intensity parameters of 4f-4f transitions in the Eu(dipivaloylmethanate) 3 1, lo-phenanthroline complex. J. Lumin. 69, 77 (1996).CrossRefGoogle Scholar
41.Lei, F. and Yan, B.: Hydrothermal synthesis and luminescence of CaMO4: RE3+ (M = W, Mo; RE = Eu, Tb) submicro-phosphors. J. Solid State Chem. 181, 855 (2008).CrossRefGoogle Scholar