Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T13:18:04.188Z Has data issue: false hasContentIssue false

Y1Ba2Cu3O7–x multilayer structures with a thick SiO2 interlayer for multichip modules

Published online by Cambridge University Press:  31 January 2011

S. Afonso
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
K. Y. Chen
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
Q. Xiong
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
Y. Q. Tang
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
G. J. Salamo
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
F. T. Chan
Affiliation:
Department of Physics/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
J. Cooksey
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
S. Scott
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
Y. J. Shi
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
S. Ang
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
W. D. Brown
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
L. W. Schaper
Affiliation:
Department of Electrical Engineering/HiDEC, University of Arkansas, Fayetteville, Arkansas 72701
Get access

Abstract

For high temperature superconducting multichip modules and other related electronic applications, it is necessary to be able to fabricate several Y1Ba2Cu3O7–x (YBCO) layers separated by thick low dielectric constant dielectric layers. In this work, we report the successful fabrication of YBCO/YSZ/SiO2 (1–2 μm)/YSZ/YBCO multilayer structures on single crystal yttria stabilized zirconia (YSZ) substrates. In contrast to previously reported work, the top YBCO layer did not show any cracking. This is due to a technique that allows for stress relief in the SiO2 layer before the second YBCO layer is deposited. The top YBCO layer in our multilayer structure had Tc = 87 K and Jc = 105 A/cm2 (at 77 K), whereas the bottom YBCO layer had Tc = 90 K and Jc = 1.2 × 106 A/cm2 (at 77 K). We also showed that the quality of the bottom YBCO layer was preserved during the fabrication of the multilayer due to the annealing process during which O2 diffused into the YBCO, replacing the O2 lost during the deposition of the top YBCO layer.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Burns, M. J., Char, K., Cole, B. F., Ruby, W. S., and Satchen, S. A., Appl. Phys. Lett. 62, 1435 (1993).CrossRefGoogle Scholar
2.Schaper, L. W., Ang, S. S., Low, Y. L., and Oldham, D., IEEE Trans. Components, Hybrids, Manufacturing Technol. 18, 99 (1995).Google Scholar
3.Talvacchio, J., Forrester, M. G., and Gavalier, J. R., “Properties of passive structures for multilayer HTS digital circuits,” IEEE Trans. Appl. Supercond. (1995).Google Scholar
4.Olsson, E., Brorsson, G., Nilsson, P. A., and Claeson, T., Appl. Phys. Lett. 63, 1567 (1993).CrossRefGoogle Scholar
5.Waytena, G. L., Hoff, H. A., Wolcott, R. R. Jr, Broussard, P. R., Vold, C. L., and Lee, C., J. Electron. Mater. 3, 24, 189 (1995).Google Scholar
6.Findikoglu, A., Doughty, C., Bhattacharya, S., Li, Q., Xi, X. X., Venkatesan, T., Fahey, R. E., Strauss, A. J., and Phillips, J. M., Appl. Phys. Lett. 61, 1718 (1995).Google Scholar
7.Kingston, J. J., Wellstood, F. C., Lerch, P., Miklich, A. H., and Clarke, J., Appl. Phys. Lett. 56, 189 (1990).Google Scholar
8.Fork, D. K., Ponce, F. A., Tramontana, J., Newman, N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 58, 2432 (1991).CrossRefGoogle Scholar
9.Fork, D. K., Fenner, D. B., Barton, R. W., Phillips, J. M., Connel, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).Google Scholar
10.Chen, K. Y., Salamo, G. J., Afonso, S., Xu, X. L., Tang, Y. Q., Xiong, Q., Chan, F. T., and Schaper, L. W., Physica C 267, 355 (1996).CrossRefGoogle Scholar
11.Florence, R. G., Ang, S. S., and Brown, W. D., Supercond. Sci. Technol. 8, 546 (1995).Google Scholar
12.Ijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
13.Reade, R. P., Beardahl, P., Russo, R. E., and Garrison, S. M., Appl. Phys. Lett. 61, 2231 (1992).CrossRefGoogle Scholar
14.Wu, X. D., Foltyn, S.R., Arendt, P., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y., and Peterson, D. E., Appl. Phys. Lett. 65, 1961 (1994).CrossRefGoogle Scholar
15.Florence, R. G., Ang, S. S., and Brown, W. D., Proc. Low Temperature Electronics and High Temperature Superconductivity, Vol. 95–9, Electrochemical Society, 113 (1995).Google Scholar
16.Reade, R. P., Beardahl, P., Russo, R. E., and Schaper, L. W., Appl. Phys. Lett. 66, 2001 (1995).CrossRefGoogle Scholar
17.Phillips, J. M., J. Appl. Phys. 79 (4), 1829 (1996).Google Scholar
18.Afonso, S., Ph.D. Thesis, Department of Physics, University of Arkansas, Fayetteville, AR, Chap. IV (1997).Google Scholar
19.Fenner, D. B., Viano, A. M., Fork, D. K., Connel, G. A. N., Boyce, J. B., Ponce, F. A., and Tramontana, J. C., J. Appl. Phys. 69, 2176 (1991).CrossRefGoogle Scholar
20.Chromik, S., Sith, J., Strbik, V., Schilder, J., Smatko, V., Benacka, S., Kliment, V., and Levarsky, J., J. Appl. Phys. 66, 1477 (1988).CrossRefGoogle Scholar
21.Fang, Y. K., Chen, K. H., Hwang, S. B., Wu, S. J., Liu, C.R., Lin, W. T., and Chen, J. R., Thin Solid Films 208, 228 (1992).Google Scholar
22.Komatsu, T., Tanaka, O., Matusita, K., Takata, M., and Yamashita, T., Jpn. J. Appl. Phys. 27, L1025 (1988).CrossRefGoogle Scholar
23.Florence, G., Ph.D. Thesis, Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, Chap. 5, pp. 155–156, May 1995.Google Scholar
24.Dauplaise, H. M., Vacarro, K., Bennett, B. R., and Lorenzo, J. P., J. Electrochem. Soc. 139, 1684 (1992).Google Scholar
25.Sinha, A. K., Levenstein, H. J., and Smith, T. E., J. Appl. Phys. 49, 2423 (1978).Google Scholar
26.Blech, I. and Cohen, U., J. Appl. Phys. 53, 4202 (1982).Google Scholar
27.Blaauw, C., J. Appl. Phys. 54, 5064 (1983).Google Scholar
28.Haque, M. S., Naseem, H. A., and Brown, W. D., IEEE International Reliability Physics Proceedings, May 1996, p. 274.Google Scholar
29.Haque, M. S., Naseem, H. A., and Brown, W. D., J. Electrochem. Soc. 142, 3864 (1995).Google Scholar
30.Sunami, H., Itoh, Y., and Sato, K., J. Appl. Phys. 41, 5115 (1970).CrossRefGoogle Scholar
31.Chen, K. Y., Afonso, S., Xiong, Q., Salamo, G. J., and Chan, F. T., Physica C (in press).Google Scholar
32.Wellstood, F. C., Kingston, J. J., and Clarke, J., J. Appl. Phys. 75, 683 (1994).CrossRefGoogle Scholar