Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:57:47.135Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy study of the interaction of methanol with polycrystalline copper oxide surface

Published online by Cambridge University Press:  31 January 2011

S. Badrinarayanan*
Affiliation:
Special Instruments Division, National Chemical Laboratory, Pune 411008, India
A. B. Mandale
Affiliation:
Special Instruments Division, National Chemical Laboratory, Pune 411008, India
S. R. Sainkar
Affiliation:
Special Instruments Division, National Chemical Laboratory, Pune 411008, India
*
(a) Address all correspondence to this author.
Get access

Abstract

Methanol decomposition on a clean polycrystalline copper oxide surface was studied by x-ray photoelectron spectroscopy (XPS). Methanol was adsorbed at 133 K and desorbed over a broad temperature range. When CuO was exposed to a very low dose of methanol vapor, dissociative adsorption takes place, leading to the formation of CH3O and H2O. This is attributed to the presence of preadsorbed oxygen on the CuO surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wachs, I. E. and Madix, R. J., Surf. Sci. 173, 531 (1978).CrossRefGoogle Scholar
2.Holub-Karppe, E., Prince, K. C., Horn, K., and Woodruff, D. P., Surf. Sci. 173, 176 (1986).CrossRefGoogle Scholar
3.Egawa, C., Doi, I., Naito, S., and Tamaru, K., Surf. Sci. 176, 491 (1986).CrossRefGoogle Scholar
4.Campbell, C. T., Daube, K. A., and White, J.M., Surf. Sci. 182, 458 (1987).CrossRefGoogle Scholar
5.Hirschwald, W. and Hofmann, D., Surf. Sci. 140, 415 (1984).CrossRefGoogle Scholar
6.Tobin, J., Hirschwald, W., and Cunningham, J., Spectrochem. Acta 40B, 725 (1985).CrossRefGoogle Scholar
7.Au, C. T., Hirch, W., and Hirschwald, W., Surf. Sci. 221, 113 (1989).CrossRefGoogle Scholar
8.Fox, D. F. and Schulz, K.H., J. Vac. Sci. Technol. A 8, 2599 (1990).Google Scholar
9.Bowker, M. and Madix, R.J., Surf. Sci. 95, 190 (1980).CrossRefGoogle Scholar
10.Chan, L. and Griffin, G.L., Surf. Sci. 173, 160 (1986).CrossRefGoogle Scholar
11.Badrinarayanan, S. and Mandale, A. B., J. Mater. Res. 10, 1091 (1995).CrossRefGoogle Scholar
12.Losev, A., Kostov, K., and Tyuliev, G., Surf. Sci. 213, 564 (1989).CrossRefGoogle Scholar
13.Panzner, G., Egert, B., and Schmidt, H. P., Surf. Sci. 151, 400 (1985).CrossRefGoogle Scholar
14.Frost, D. C., Ishitani, A., and Mcdowell, C.M., Mol. Phys. 24, 861 (1972).CrossRefGoogle Scholar
15.Au, C. T., Hirsch, W., and Hirschwald, W., Surf. Sci. 197, 391 (1988).CrossRefGoogle Scholar