Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:23:35.793Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy investigation of MgAl2O4 thin films for humidity sensors

Published online by Cambridge University Press:  03 March 2011

Giulia Mattogno
Affiliation:
C.N.R., Istituto di Chimica dei Materiali, C.P. 10, 00016 Monterotondo Stazione, Rome, Italy
Guido Righini
Affiliation:
C.N.R., Istituto di Chimica dei Materiali, C.P. 10, 00016 Monterotondo Stazione, Rome, Italy
Giampiero Montesperelli
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
Enrico Traversa
Affiliation:
Dipartimento di Scienze e Tecnologie Chimiche, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
Get access

Abstract

MgAl2O4 thin films, to be studied as active elements for humidity sensors, were deposited on Si/SiO2 substrates by radio-frequency sputtering. This paper discusses the x-ray photoelectron spectroscopy (XPS) investigation of these films. XPS demonstrated that the thin films had a stoichiometry close to that of MgAl2O4. The evaluation of the modified Auger parameter α' for Al gave structural information about the order of the crystalline structure of the thin films. The combination of Ar+ ion etching and XPS analysis showed the simultaneous presence of Mg, Al, and Si at the film-substrate interface. The thicknesses of the interfaces were calculated between 7 and 10 nm. The analysis of the binding energy (b.e.) values of the XPS peaks at different etching depths showed that O 1s and Si 2p b.e. values were characteristic of a silicate at the interface, whereas in the substrate they were typical of silica. This suggests a chemical interaction took place between film and substrate with the formation of a silicate layer at the interface, which may be the cause of the good adhesion of MgAl2O4 films to silica, as observed by peel tests with Scotch tape.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kulwicki, B. M., J. Am. Ceram. Soc. 74, 697 (1991).CrossRefGoogle Scholar
2Arai, H. and Seiyama, T., in Sensors: A Comprehensive Survey, edited by Göpel, W., Hesse, J., and Zemel, J. N. (VCH, Weinheim, Germany, 1992), Vol. 3, p. 981.Google Scholar
3Ichinose, N., Am. Ceram. Soc. Bull. 64 (12), 1581 (1985).Google Scholar
4Yamazoe, N. and Shimizu, Y., Sens. Actuators 10, 379 (1986).CrossRefGoogle Scholar
5Fagan, J. G. and Amarakoon, V. R. W., Am. Ceram. Soc. Bull. 72 (3), 119 (1993).Google Scholar
6Yagi, H., in Proc. Symp. on Chemical Sensors II, edited by Butler, M., Ricco, A., and Yamazoe, N. (The Electrochemical Society, Pennington, NJ, 1993), Vol. 93–7, p. 498.Google Scholar
7Chang, S. C. and Ko, W. H., in Sensors: A Comprehensive Survey, edited by Göpel, W., Hesse, J., and Zemel, J. N. (VCH, Weinheim, Germany, 1989), Vol. 1, p. 169.CrossRefGoogle Scholar
8Liu, C. C., in Techn. Dig. 4th Int. Meet, on Chem. Sensors, Tokyo, Japan (Japan Ass. of Chem. Sensors), September 1992, p. 2.Google Scholar
9Baltes, H., Charbon, E., Parameswaran, M., and Robinson, A. M., Sens. Actuators B 1, 441 (1990).CrossRefGoogle Scholar
10Yamamoto, T. and Murakami, K., in Chemical Sensor Technology, edited by Seiyama, T. (Kodansha Ltd., Tokyo, Japan, and Elsevier, Amsterdam, The Netherlands, 1989), Vol. 2, p. 133.CrossRefGoogle Scholar
11Slunecko, J., Hole, J., Hrovat, M., and Ceh, M., Sens. Actuators B 7, 439 (1992).CrossRefGoogle Scholar
12Gusmano, G., Montesperelli, G., Nunziante, P., Traversa, E., and Prudenziati, M., in Third Euro-Ceramics, Vol. 2: Properties of Ceramics, edited by Duran, P. and Fernandez, J. F. (Faenza Editrice Iberica, Castellon de la Plana, Spain, 1993), p. 449.Google Scholar
13Nabeta, Y., Suzuki, K., and Inuzuka, T., in Analytical Chemistry Simposia Series: Chemical Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Kodansha Ltd., Tokyo, Japan, and Elsevier, Amsterdam, The Netherlands, 1983), Vol. 17, p. 410.Google Scholar
14Sadaoka, Y., Sakai, Y., and Matsumoto, S., J. Mater. Sci. 21, 1269 (1986).CrossRefGoogle Scholar
15Chen, Z., Jin, M. C., and Zhen, C., Sens. Actuators B 2, 167 (1990).CrossRefGoogle Scholar
16Yoshimura, N., Sato, S., Itoi, M., and Taguchi, H., Sozai Busseigaku Zasshi 3, 47 (1990).Google Scholar
17Gusmano, G., Montesperelli, G., Nunziante, P., Traversa, E., Montenero, A., Braghini, M., Mattogno, G., and Bearzotti, A., J. Ceram. Soc. Jpn. 101, 1095 (1993).CrossRefGoogle Scholar
18Kovac, M. G., Chleck, D., and Goodman, P., Solid State Technol. 21, 35 (1978).Google Scholar
19Regtien, P. P. L., Sens. Actuators 2, 85 (1981/82).CrossRefGoogle Scholar
20Jachowicz, R. S. and Senturia, S. D., Sens. Actuators 2, 171 (1981/82).CrossRefGoogle Scholar
21Garverick, S. L. and Senturia, S. D., IEEE Trans. Electron Devices ED–29 (1), 90 (1982).CrossRefGoogle Scholar
22Rogers, G. J., Westcott, L. C., Davies, R. A., Ali, H. O., Swallow, G. H., and Read, E., in Analytical Chemistry Simposia Series: Chemical Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Kodansha Ltd., Tokyo, Japan, and Elsevier, Amsterdam, The Netherlands, 1983), Vol. 17, p. 428.Google Scholar
23Parameswaran, M., Baltes, H. P., Brett, M. J., Fraser, D. E., and Robinson, A. M., Sens. Actuators 15, 325 (1988).CrossRefGoogle Scholar
24Seiyama, T., Yamazoe, N., and Arai, H., Sens. Actuators 4, 85 (1983).CrossRefGoogle Scholar
25Shimizu, Y., Arai, H., and Seiyama, T., Sens. Actuators 7, 11 (1985).CrossRefGoogle Scholar
26Gusmano, G., Montesperelli, G., Nunziante, P., and Traversa, E., in Ceramic Transactions: Ceramic Powder Science TV, edited by Hirano, S. I., Messing, G. L., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1991), Vol. 22, p. 545.Google Scholar
27Gusmano, G., Montesperelli, G., Nunziante, P., and Traversa, E., Br. Ceram. Trans. 92, 104 (1993).Google Scholar
28Gusmano, G., Montesperelli, G., Traversa, E., Bearzotti, A., Petrocco, G., D'Amico, A., and Di Natale, C., Sens. Actuators B 7, 460 (1992)CrossRefGoogle Scholar
29Gusmano, G., Montesperelli, G., Traversa, E., and Mattogno, G., J. Am. Ceram. Soc. 76, 743 (1993).CrossRefGoogle Scholar
30Gusmano, G., Montesperelli, G., Traversa, E., and Bearzotti, A., Sens. Actuators B 14, 525 (1993).CrossRefGoogle Scholar
31Gusmano, G., Montesperelli, G., Nunziante, P., and Traversa, E., Electrochim. Acta 38, 2617 (1993).CrossRefGoogle Scholar
32Anderson, J. H. and Parks, G. A., J. Phys. Chem. 72, 3362 (1968).CrossRefGoogle Scholar
33McCafferty, E. and Zettlemoyer, A. C., Discuss. Faraday Soc. 52, 239 (1971).CrossRefGoogle Scholar
34Nitta, T., Terada, Z., and Hayakawa, S., J. Am. Ceram. Soc. 63, 295 (1980).CrossRefGoogle Scholar
35Sadaoka, Y., Matsuguchi, M., Sakai, Y., and Mitsui, S., J. Mater. Sci. 22, 2975 (1987).CrossRefGoogle Scholar
36Yeh, Y. C., Tseng, T. Y., and Chang, D. A., J. Am. Ceram. Soc. 73, 1992 (1990).CrossRefGoogle Scholar
37Schierbaum, K. D., Kirner, U. K., Geiger, J. F., and Gopel, W., Sens. Actuators B 4, 87 (1991).CrossRefGoogle Scholar
38Matsushima, S., Teraoka, Y., Miura, N., and Yamazoe, N., Jpn. J. Appl. Phys. 27, 1798 (1988).CrossRefGoogle Scholar
39Matsushima, S., Maekawa, T., Tamaki, J., Miura, N., and Yamazoe, N., J. Chem. Soc. Jpn., 1677 (1991).Google Scholar
40Yamazoe, N., Sens. Actuators B 5, 7 (1991).CrossRefGoogle Scholar
41Cheong, H. W., Choi, J. J., Kim, H. P., Kim, J. My., Kim, J. Mo., and Churn, G. S., Sens. Actuators B 9, 227 (1992).CrossRefGoogle Scholar
42Mattogno, G., Righini, G., Montesperelli, G., and Traversa, E., Appl. Surf. Sci. 70/71, 363 (1993).CrossRefGoogle Scholar
43Battistoni, C., Mattogno, G., and Paparazzo, E., Surf. Interface Anal. 7, 117 (1985).CrossRefGoogle Scholar
44Gusmano, G., Nunziante, P., Traversa, E., and Chiozzini, G., J. Eur. Ceram. Soc. 7, 31 (1991).CrossRefGoogle Scholar
45Wagner, CD., in Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M. P. (John Wiley, London, UK, 1983), p. 477.Google Scholar
46Paparazzo, E., Dormann, J. L., and Fiorani, D., J. Electron Spectrosc. Relat. Phenom. 36, 77 (1985).CrossRefGoogle Scholar
47Vinek, H. and Ebel, M., Z. Phys. Chem. 99, 145 (1976).CrossRefGoogle Scholar
48West, A. R., Solid State Chemistry and its Applications (John Wiley & Sons, Chichester, UK, 1987), p. 569.Google Scholar
49West, R. H. and Castle, J. E., Surf. Interface Anal. 4, 68 (1982).CrossRefGoogle Scholar
50Wagner, CD., Faraday Discuss. Chem. Soc. 60, 291 (1975).CrossRefGoogle Scholar
51Wagner, CD., in Handbook of X-Ray and Ultraviolet Photoelectron Spectroscopy, edited by Briggs, D. (Heyden and Sons Ltd., London, UK, 1977), Chap. 7.Google Scholar
52Wagner, C D., Anal. Chem. 44, 967 (1972).CrossRefGoogle Scholar
53Gaarenstroom, S. W. and Winograd, N., J. Chem. Phys. 67, 3500 (1977).CrossRefGoogle Scholar
54Wagner, C. D. and Joshi, A., J. Electron Spectrosc. Relat. Phenom. 47, 283 (1988).CrossRefGoogle Scholar
55Wagner, CD., Six, H. A., Jansen, W. T., and Taylor, J. A., Appl. Surf. Sci. 9, 203 (1981).CrossRefGoogle Scholar
56Wagner, CD., Passoja, D. E., Hillery, H. F., Kinisky, T. G., Six, H. A., Jansen, W. T., and Taylor, J. A., J. Vac. Sci. Technol. 21, 933 1982).CrossRefGoogle Scholar