Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:02:01.705Z Has data issue: false hasContentIssue false

X-ray absorption near edge structures in cobalt oxides

Published online by Cambridge University Press:  31 January 2011

T. Jiang
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208
D. E. Ellis
Affiliation:
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

Theoretical studies have been made of K-edge x-ray absorption near edge structure (XANES) of Co in CoO, Co(OH)2, CoTiO3, Co3O4, and CoAl2O4. Correlations of experimental near edge features with site symmetry, local geometry, local electronic structure, i.e., atomic configuration, charge transfer, and backscattering from neighboring atomic potentials are interpreted. The self-consistent Discrete Variational Xa Method (DV-Xα) within an embedded cluster technique has been used to generate the crystal potential. A multiple scattering (MS) approach is then used to solve for the final state wave function. The ground state DV wave functions are analyzed in terms of the projected density of states, whereas the final state MS continuum wave functions are analyzed through the concept of photoelectron trapping time.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wilson, S. T. and Flanigan, E.M., U.S. Patent 4,567,029 (1986); S. T. Wilson and E.M. Flanigan, Am. Chem. Soc. Symp. Ser. 398, 329 (1989).Google Scholar
2.Chen, J., Sandar, G., Thomas, J.M., Xu, R., Greaves, G.N., and Waller, D., Chem. Mater. 4, 1373 (1992).CrossRefGoogle Scholar
3.Yu, Y., Couves, J. W., Jones, R.H., Catlow, C.R.A., Greaves, G.N., Chen, J., and Thomas, J.M., J. Phys. Chem. Solids 52, 1229 (1991).CrossRefGoogle Scholar
4.Kutzler, F. W. and Ellis, D. E., Phys. Rev. B 29, 6890 (1984).CrossRefGoogle Scholar
5.Ellis, D. E., Guo, J., and Cheng, H.P., Adv. in Quant. Chem. 22, 125 (1991).Google Scholar
6.Kohn, W., Phys. Rev. 140, 1133 (1965).CrossRefGoogle Scholar
7.Ellis, D. E., Rev. Solid State Sci. 5, 227 (1991).Google Scholar
8.Nakamatsu, H., Mukoyama, T., and Adachi, H., Chem. Phys. 143, 221 (1990); J. Electr. Spectros. and Rel. Phenom. 53, 265 (1991); J. Chem. Phys. 95, 3167 (1991).CrossRefGoogle Scholar
9.Ellis, D. E., Benesh, G.A., and Byrom, E., Phys. Rev. B 20, 1198 (1979).CrossRefGoogle Scholar
10. (a) Chou, S. H., Guo, J., and Ellis, D. E., Phys. Rev. B 34, 12 (1986);CrossRefGoogle Scholar
(b) Chou, S. H., Kutzler, F. W., Ellis, D. E., and Cao, P. L., Surf. Sci. 164, 85 (1985);CrossRefGoogle Scholar
(c) Alp, E.E., Shenoy, G.K., Hinks, D.G., Capone, D.W. II, Soderholm, L., Schuttler, H. B., Guo, J., Ellis, D. E., Montano, P. A., and Ramanathan, M., Phys. Rev. B 35, 7199 (1987);Google Scholar
(d) Guo, J., Ellis, D. E., Alp, E., Soderholm, L., and Shenoy, G.K., Phys. Rev. B 39, 6125 (1989).CrossRefGoogle Scholar
11.Slater, J. C., The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).Google Scholar
12.Bethe, H. A. and Jackiw, R., Intermediate Quantum Mechanics (Benjamin-Cummings, Menlo Park, CA, 1974).Google Scholar
13.Liegener, C. and Ågren, H., Phys. Rev. B 48, 789 (1993).CrossRefGoogle Scholar
14.Johnson, K. H., J. Chem. Phys. 45, 3085 (1966).CrossRefGoogle Scholar
15.Dill, D. and Dehmer, J.L., J. Chem. Phys. 61, 692 (1974).Google Scholar
16.Natoli, C. R., Misemer, D.K., Doniach, S., and Hodgson, K.O., Phys. Rev. A 22, 1104 (1980).CrossRefGoogle Scholar
17.Kutzler, F. W., Natoli, C.R., Misemer, D. K., Doniach, S., and Hodgson, K.O., J. Chem. Phys. 73, 3274 (1980).Google Scholar
18.Norman, D., Stöhr, J., Jaeger, R., Durham, P.J., and Pendry, J. B., Phys. Rev. Lett. 51, 2052 (1983).CrossRefGoogle Scholar
19.Guo, J., Ellis, D.E., Alp, E. E., Soderholm, L., and Shenoy, G.K., Phys. Rev. B 39, 6125 (1989).CrossRefGoogle Scholar
20.Schmahl, N. G. and Eikerling, G. F., Zeitschrift fur Physikalische Chemie 62, 268 (1968).Google Scholar
21.Kidoh, K., Tanaka, K., Marumo, F., and Takei, H., Acta Crystallogr. B 40, 92 (1984).Google Scholar
22.Wyckoff, R. W. G., Crystal Structures (Interscience, New York, 1965), p. 268.Google Scholar
23.Furuhashi, H., Inagaki, M., and Naka, S., J. Inorg. Nucl. Chem. 35, 3009 (1973).CrossRefGoogle Scholar
24.Will, G., Masciocchi, N., Parrish, W., and Hart, M., J. Appl. Crystallogr. 20, 394 (1987).CrossRefGoogle Scholar
25.Wells, A. F., Structural Inorganic Chemistry (Interscience, New York, 1984).Google Scholar
26.Agarwal, B. K., X-ray Spectroscopy (Springer-Verlag, New York, 1991).CrossRefGoogle Scholar
27. We are obliged to R. W. Broach for providing access to this program.Google Scholar
28.Bianconi, A.et al., EXAFS and Near Edge Structure, edited by Bianconi, A., Incoccia, L., and Stipcich, S. (Springer-Verlag, Berlin, 1983), p. 57.CrossRefGoogle Scholar
29.Natoli, C. R., EXAFS and Near Edge Structure III, edited by Hodgson, K. O., Hedman, B., and Penner-Hahn, J. E. (Springer-Verlag, New York, 1984), p. 38.Google Scholar
30.Sheehy, J. A., Gil, T. J., Winstead, C. L., Farren, R. W., and Langhoff, P. W., J. Chem. Phys. 91, 1796 (1989).Google Scholar
31.Weng, X. and Rez, P., Phys. Rev. B 39, 7405 (1989).Google Scholar