Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T22:36:15.491Z Has data issue: false hasContentIssue false

The work-of-fracture of brittle materials: Principle, determination, and applications

Published online by Cambridge University Press:  03 March 2011

S.M. Barinov
Affiliation:
High-Tech Ceramics Research Center, Russian Academy of Sciences, Ozernaya 48, Moscow 119361, Russia
M. Sakai
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441, Japan
Get access

Abstract

Theoretical and empirical considerations of the work-of-fracture, γwof, of brittle materials are reviewed. The energy principle of the work-of-fracture provides a modified Irwin similarity relationship in the nonlinear fracture mechanics regime. Various microscopic deformation and fracture processes in the crack wake and the crack-face contact regions contribute to the rising R-curve behavior of brittle materials, and then significantly affect the work-of-fracture, resulting in the work-of-fracture that is dependent on the dimension and geometry of test specimens as well as test methods. The requisite for the work-of-fracture to be a material characteristic resistance to failure is discussed in relation to the R-curve behavior. Some examples of the work-of-fracture test results demonstrate the usefulness of the work-of-fracture for designing brittle materials with improved toughness.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Griffith, A. A., Trans. R. Soc. Lond. A 221, 163 (1920).Google Scholar
2Stoneham, A. M., J. Am. Ceram. Soc. 64, 54 (1981).CrossRefGoogle Scholar
3Davidge, R. W., Mechanical Behavior of Ceramics, Chap. 3 (Cambridge University Press, Cambridge, UK, 1979).Google Scholar
4Swanson, G. D., J. Am. Ceram. Soc. 55, 48 (1972).CrossRefGoogle Scholar
5Special issue of fracture and damage of concrete and rock, Eng. Fract. Mech. 35 (1990).Google Scholar
6Hübner, H. and Jillek, W., J. Mater. Sci. 12, 117 (1977).CrossRefGoogle Scholar
7Sakai, M., Yoshimura, J., Goto, Y., and Inagaki, M., J. Am. Ceram. Soc. 71, 609 (1988).CrossRefGoogle Scholar
8Sakai, M. and Bradt, R. C., J. Ceram. Soc. Jpn. 96, 801 (1988).CrossRefGoogle Scholar
9Green, D. J., Hannink, R. H. J., and Swain, M. V., Transformation Toughening of Ceramics, Chap. 3 (CRC Press, Boca Raton, FL, 1989).Google Scholar
10Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, Chap. 8 (John Wiley, New York, 1983).Google Scholar
11Rice, J. R., J. Appl. Mech. 35, 379 (1968).CrossRefGoogle Scholar
12Nakayama, J., J. Am. Ceram. Soc. 48, 583 (1965).CrossRefGoogle Scholar
13Tattersall, H. G. and Tappin, G., J. Mater. Sci. 1, 296 (1966).CrossRefGoogle Scholar
14Sakai, M., Taikabutu Overseas 8, 4 (1988).Google Scholar
15Davidge, R. W. and Tappin, G., J. Mater. Sci. 3, 165 (1968).CrossRefGoogle Scholar
16Atkins, A. G. and Mai, Y. W., Elastic and Plastic Fracture (Ellis Horwood, Chichester, UK, 1985).Google Scholar
17Bažant, Z.P. Ba. and Kazemi, M.T., Int. J. Fract. 51, 121 (1991).CrossRefGoogle Scholar
18Petersson, P. E., Cem. Cone. Res. 10, 78 (1980).Google Scholar
19Hillerborg, A., Mater. Struct. 18, 407 (1986).CrossRefGoogle Scholar
20Sakai, M., Urashima, K., and Inagaki, M., J. Am. Ceram. Soc. 66, 868 (1983).CrossRefGoogle Scholar
21Sakai, M. and Ichikawa, H., Int. J. Fract. 55, 65 (1992).CrossRefGoogle Scholar
22Sakai, M. and Inagaki, M., J. Am. Ceram. Soc. 72, 388 (1989).CrossRefGoogle Scholar
23Barinov, S. M. and Shevchenko, V. Ya., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., Munz, D., Sakai, M., and Shevchenko, V. Ya. (Plenum Press, New York, 1992), Vol. 9, pp. 209217.CrossRefGoogle Scholar
24Barinov, S. M., Andriashvili, P. I., and Tavadze, N. F., Proc. Acad. Sci. USSR 304, 1361 (1989).Google Scholar
25Steinbrech, R., Knehans, R., and Schaarwachter, W., J. Mater. Sci. 18, 265 (1983).CrossRefGoogle Scholar
26Berry, J. P., J. Mech. Phys. Solids 8, 194 (1960).CrossRefGoogle Scholar
27ASTM Standard E399–83, Annual Book of ASTM Standards (American Society for Testing and Materials, Philadelphia, PA, 1983).Google Scholar
28Bluhm, J. I., Eng. Fract. Mech. 7, 593 (1975).CrossRefGoogle Scholar
29Barinov, S. M. and Shevchenko, V. Ya., J. Mater. Sci. Lett. 11, 336 (1992).CrossRefGoogle Scholar
30Munz, D., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Evans, A. G., Hasselman, D. P. H., and Lange, F. F. (Plenum, New York, 1983), Vol. 6, pp. 126.Google Scholar
31Green, D. J., Nicholson, P. S., and Embury, J. D., J. Am. Ceram. Soc. 56, 619 (1973)CrossRefGoogle Scholar
32Hiibner, H. and Strobl, W., Berichite Deutche Ker. Ges. 54, 117 (1977).Google Scholar
33Barinov, S. M. and Shevchenko, V. Ya., J. Mater. Sci. Lett. 10, 1293 (1991).CrossRefGoogle Scholar
34Cotterell, B., Lee, E., and Mai, Y. W., Int. J. Fract. 20, 243 (1982).CrossRefGoogle Scholar
35Mai, Y. W. and Cotterell, B., Int. J. Fract. 24, 229 (1984).CrossRefGoogle Scholar
36Mai, Y. W. and Cotterell, B., Eng. Fract. Mech. 21, 123 (1985).CrossRefGoogle Scholar
37Mai, Y. W. and Cotterell, B., Int. J. Fract. 32, 105 (1986).CrossRefGoogle Scholar
38Wittmann, F. H., Mihashi, H., and Nomura, N., Eng. Fract. Mech. 35, 107 (1990).CrossRefGoogle Scholar
39Sakai, M. and Shinkai, O., in Proceedings of the Second International Conference on Refractories (The Technical Association of Refractories, Tokyo, 1987), Vol. 2, pp. 869880.Google Scholar
40Hasselman, D. P. H., J. Am. Ceram. Soc. 52, 600 (1969).CrossRefGoogle Scholar
41Krassulin, Yu. L., Timofeev, V. N., Barinov, S. M., Asonov, A. N., Ivanov, A. B., and Shnyrev, G. D., Porous Structural Ceramics (Metallurgy Press, Moscow, 1980).Google Scholar
42Barinov, S. M., Mater. Sci. Eng. A154, Lll (1992).Google Scholar
43Clegg, W. J., Kendall, K., Alford, N. McW., Button, T. W., and Birchall, J. D., Nature 347, 455 (1990).CrossRefGoogle Scholar
44Barinov, S. M., Ivanov, D. A., Shevchenko, V. Ya., and Fomina, G.A., J. Mater. Sci. 27, 5558 (1992).CrossRefGoogle Scholar
45Sakai, M., Bradt, R. C., and Fischbach, D. B., J. Mater. Sci. 21, 1491 (1986).CrossRefGoogle Scholar
46Sakai, M., Takeuchi, S., Fischbach, D. B., and Bradt, R. C., in Ceramic Microstructures '86 (Plenum, New York, 1988), pp. 869876.Google Scholar
47Sakai, M., J. Ceram. Soc. Jpn. 99, 983 (1991).CrossRefGoogle Scholar
48Miyajima, T. and Sakai, M., J. Mater. Res. 6, 2312 (1991).CrossRefGoogle Scholar
49Suzuki, T. and Sakai, M., Comp. Sci. Tech. (in press).Google Scholar
50Sakai, M. and Miyajima, T., Comp. Sci. Technol. 40, 231 (1991).CrossRefGoogle Scholar
51Miyajima, T. and Sakai, M., J. Mater. Res. 6, 539 (1991).CrossRefGoogle Scholar
52Sakai, M., ISIJ Int. 32, 937 (1992).CrossRefGoogle Scholar
53Suzuki, T., Sato, M., and Sakai, M., J. Mater. Res. 7, 2869 (1992).CrossRefGoogle Scholar
54Miyajima, T. and Sakai, M., in Fracture Mechanics of Ceramics, edited by Bradt, R. C., Hasselman, D. P. H., Munz, D., Sakai, M., and Shevchenko, V. Ya. (Plenum, New York, 1992), Vol. 9, pp. 8396.CrossRefGoogle Scholar