Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T09:08:44.221Z Has data issue: false hasContentIssue false

Work of adhesion/separation between soft elastomers of different mixing ratios

Published online by Cambridge University Press:  17 August 2015

Yalin Yu
Affiliation:
Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
Daniel Sanchez
Affiliation:
Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
Nanshu Lu*
Affiliation:
Center for Mechanics of Solids, Structures and Materials, Department of Aerospace Engineering and Engineering Mechanics, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Adhesion between soft matter is a universal mechanical problem in bio-engineering and bio-integration. The Johnson–Kendall–Roberts (JKR) method is widely used to measure the work of adhesion and work of separation between soft materials. In this study, the JKR theory is recaptured and three complementary dimensionless parameters are summarized to help design adhesion measurement experiments compatible with the JKR theory. The work of adhesion/separation between two commonly used soft elastomers, polydimethylsiloxane (PDMS, Sylgard® 184) and Ecoflex® 0300, is measured by the JKR method using a dynamical mechanical analyzer. Effects of base polymer to curing agent mixing ratio and solvent extraction are examined. A unified adhesion mechanism is proposed to explain the different adhesion behaviors. It is concluded that chain–matrix interaction is the most effective adhesion mechanism compared with chain–chain or matrix–matrix interactions. Chain–chain interaction obstructs chain–matrix interaction as it either blocks or entangles with surface chains which could have interacted with the matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., and Tano, Y.: Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 351(12), 1187 (2004).CrossRefGoogle ScholarPubMed
Iwata, T., Yamato, M., Tsuchioka, H., Takagi, R., Mukobata, S., Washio, K., Okano, T., and Ishikawa, I.: Periodontal regeneration with multi-layered periodontal ligament-derived cell sheets in a canine model. Biomaterials 30(14), 2716 (2009).CrossRefGoogle Scholar
Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., and Mori, H.: Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat. Med. 12(4), 459 (2006).CrossRefGoogle ScholarPubMed
Kim, D.H., Viventi, J., Amsden, J.J., Xiao, J.L., Vigeland, L., Kim, Y.S., Blanco, J.A., Panilaitis, B., Frechette, E.S., Contreras, D., Kaplan, D.L., Omenetto, F.G., Huang, Y.G., Hwang, K.C., Zakin, M.R., Litt, B., and Rogers, J.A.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9(6), 511 (2010).CrossRefGoogle ScholarPubMed
Kim, D.H., Ghaffari, R., Lu, N.S., Wang, S.D., Lee, S.P., Keum, H., D'Angelo, R., Klinker, L., Su, Y.W., Lu, C.F., Kim, Y.S., Ameen, A., Li, Y.H., Zhang, Y.H., de Graff, B., Hsu, Y.Y., Liu, Z.J., Ruskin, J., Xu, L.Z., Lu, C., Omenetto, F.G., Huang, Y.G., Mansour, M., Slepian, M.J., and Rogers, J.A.: Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. U. S. A. 109(49), 19910 (2012).CrossRefGoogle ScholarPubMed
Kim, D.H., Lu, N.S., Ma, R., Kim, Y.S., Kim, R.H., Wang, S.D., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T.I., Chowdhury, R., Ying, M., Xu, L.Z., Li, M., Chung, H.J., Keum, H., McCormick, M., Liu, P., Zhang, Y.W., Omenetto, F.G., Huang, Y.G., Coleman, T., and Rogers, J.A.: Epidermal Electronics. Science 333(6044), 838 (2011).CrossRefGoogle ScholarPubMed
Meitl, M.A., Zhu, Z.T., Kumar, V., Lee, K.J., Feng, X., Huang, Y.Y., Adesida, I., Nuzzo, R.G., and Rogers, J.A.: Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5(1), 33 (2006).CrossRefGoogle Scholar
Chaudhury, M.K. and Whitesides, G.M.: Direct measurement of interfacial interactions between semispherical lenses and flat sheets of poly(dimethylsiloxane) and their chemical derivatives. Langmuir 7(5), 1013 (1991).CrossRefGoogle Scholar
Silberzan, P., Perutz, S., Kramer, E.J., and Chaudhury, M.K.: Study of the self-adhesion hysteresis of a siloxane elastomer using the JKR method. Langmuir 10(7), 2466 (1994).CrossRefGoogle Scholar
Olah, A. and Vancso, G.J.: Characterization of adhesion at solid surfaces: Development of an adhesion-testing device. Eur. Polym. J. 41(12), 2803 (2005).CrossRefGoogle Scholar
Qi, J.: Measurement of Surface and Interfacial Energies between Solid Materials Using an Elastica Loop (Virginia Polytechnic Institute and State University, Blacksburg, VA, 2000).Google Scholar
Rundlof, M., Karlsson, M., Wagberg, L., Poptoshev, E., Rutland, M., and Claesson, P.: Application of the JKR method to the measurement of adhesion to Langmuir-Blodgett cellulose surfaces. J. Colloid Interface Sci. 230(2), 441 (2000).CrossRefGoogle Scholar
Olah, A., Hillborg, H., and Vancso, G.J.: Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): Adhesion studies by contact mechanics and mechanism of surface modification. Appl. Surf. Sci. 239(3–4), 410 (2005).CrossRefGoogle Scholar
Ebenstein, D.M. and Wahl, K.J.: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298(2), 652 (2006).CrossRefGoogle ScholarPubMed
Choi, G.Y., Kim, S.J., and Ulman, A.: Adhesion hysteresis studies of extracted poly(dimethylsiloxane) using contact mechanics. Langmuir 13(23), 6333 (1997).CrossRefGoogle Scholar
Perutz, S., Kramer, E.J., Baney, J., Hui, C.Y., and Cohen, C.: Investigation of adhesion hysteresis in poly(dimethylsiloxane) networks using the JKR technique. J. Polym. Sci., Part B: Polym. Phys. 36(12), 2129 (1998).3.0.CO;2-1>CrossRefGoogle Scholar
Johnson, K.L., Kendall, K., and Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324(1558), 301 (1971).Google Scholar
Vaenkatesan, V., Li, Z.L., Vellinga, W.P., and de Jeu, W.H.: Adhesion and friction behaviours of polydimethylsiloxane—A fresh perspective on JKR measurements. Polymer 47(25), 8317 (2006).CrossRefGoogle Scholar
Crosby, A.J. and Shull, K.R.: Adhesive failure analysis of pressure-sensitive adhesives. J. Polym. Sci., Part B: Polym. Phys 37(24), 3455 (1999).3.0.CO;2-3>CrossRefGoogle Scholar
Shull, K.R.: Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng., R 36(1), 1 (2002).CrossRefGoogle Scholar
Deruelle, M., Leger, L., and Tirrell, M.: Adhesion at the solid-elastomer interface—Influence of the interfacial chains. Macromolecules 28(22), 7419 (1995).CrossRefGoogle Scholar
Mangipudi, V.S., Huang, E., Tirrell, M., and Pocius, A.V.: Measurement of interfacial adhesion between glassy polymers using the JKR method. Macromol. Symp. 102, 131 (1996).CrossRefGoogle Scholar
Ebenstein, D.M.: Nano-JKR force curve method overcomes challenges of surface detection and adhesion for nanoindentation of a compliant polymer in air and water. J. Mater. Res. 26(8), 1026 (2011).CrossRefGoogle Scholar
Cao, Y.F., Yang, D.H., and Soboyejoy, W.: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20(8), 2004 (2005).CrossRefGoogle Scholar
Moseson, A.J., Basu, S., and Barsoum, M.W.: Determination of the effective zero point of contact for spherical nanoindentation. J. Mater. Res. 23(1), 204 (2008).CrossRefGoogle Scholar
Kalidindi, S.R. and Pathak, S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56(14), 3523 (2008).CrossRefGoogle Scholar
Notbohm, J., Poon, B., and Ravichandran, G.: Analysis of nanoindentation of soft materials with an atomic force microscope. J. Mater. Res. 27(1), 229 (2012).CrossRefGoogle Scholar
Nishi, T., Nagai, S., Fujinami, S., and Nakajima, K.: Recent Progress of Nano-mechanical mapping. Chin. J. Polym. Sci. 27(1), 37 (2009).CrossRefGoogle Scholar
Grunlan, J.C., Xia, X., Rowenhorst, D., and Gerberich, W.W.: Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft materials. Rev. Sci. Instrum. 72(6), 2804 (2001).CrossRefGoogle Scholar
Sun, Y.J., Akhremitchev, B., and Walker, G.C.: Using the adhesive interaction between atomic force microscopy tips and polymer surfaces to measure the elastic modulus of compliant samples. Langmuir 20(14), 5837 (2004).CrossRefGoogle ScholarPubMed
Johnson, K.L. and Greenwood, J.A.: An adhesion map for the contact of elastic spheres. J. Colloid Interface Sci. 192(2), 326 (1997).CrossRefGoogle ScholarPubMed
Johnson, K.L.: Mechanics of adhesion. Tribol. Int. 31(8), 413 (1998).CrossRefGoogle Scholar
Johnson, K.L. and Sridhar, I.: Adhesion between a spherical indenter and an elastic solid with a compliant elastic coating. J. Phys. D: Appl. Phys. 34(5), 683 (2001).CrossRefGoogle Scholar
Maugis, D.: Extension of the Johnson-Kendall-Roberts theory of the elastic contact of spheres to large contact radii. Langmuir 11(2), 679 (1995).CrossRefGoogle Scholar
Sridhar, I., Zheng, Z.W., and Johnson, K.L.: A detailed analysis of adhesion mechanics between a compliant elastic coating and a spherical probe. J. Phys. D: Appl. Phys. 37(20), 2886 (2004).CrossRefGoogle Scholar
Lee, J.N., Park, C., and Whitesides, G.M.: Solvent Compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75(23), 6544 (2003).CrossRefGoogle ScholarPubMed
Greiner, C., del Campo, A., and Arzt, E.: Adhesion of bioinspired micropatterned surfaces: Effects of pillar radius, aspect ratio, and preload. Langmuir 23(7), 3495 (2007).CrossRefGoogle ScholarPubMed
Wypych, G.: PDMS polydimethylsiloxane. In Handbook of Polymers, Wypych, G. ed.; ChemTec Publishing, Toronto, Ontario, Canada: 2012; p. 328.CrossRefGoogle Scholar
Kroner, E., Maboudian, R., and Arzt, E.: Adhesion characteristics of PDMS surfaces during repeated pull-off force measurements. Adv. Eng. Mater. 12(5), 398 (2010).CrossRefGoogle Scholar
Palchesko, R.N., Zhang, L., Sun, Y., and Feinberg, A.W.: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS One 7(12), e51499 (2012).CrossRefGoogle ScholarPubMed
Degennes, P.G.: Wetting—Statics and dynamics. Rev. Mod. Phys. 57(3), 827 (1985).CrossRefGoogle Scholar
Hillborg, H., Tomczak, N., Olah, A., Schonherr, H., and Vancso, G.J.: Nanoscale hydrophobic recovery: A chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane). Langmuir 20(3), 785 (2004).CrossRefGoogle ScholarPubMed
Almutairi, Z., Ren, C.L., and Simon, L.: Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications. Colloids Surf., A 415, 406 (2012).CrossRefGoogle Scholar