Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T11:42:39.450Z Has data issue: false hasContentIssue false

Wet oxidation kinetics of AlAs at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

Sun-Chien Ko
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Sanboh Lee
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Hai-Lin Wang
Affiliation:
Advanced Technology Research Laboratory, Telecommunication Laboratories, Chunghwa Telecom Company, Taoyuan, Taiwan, Republic of China
Y. T. Chou
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697
Get access

Abstract

Wet oxidation in the AlAs layer sandwiched between two GaAs plates was investigated for the temperature range of 400 to 480 °C. The oxidation rate increased with increasing thickness of the AlAs layer. Theoretical analysis based on the boundary layer diffusion was performed to account for the thickness effect. The theory is in excellent agreement with the experimental measurement.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dallesasse, J.M. and Holonyak, N., Jr., Appl. Phys. Lett. 58, 394 (1991).CrossRefGoogle Scholar
2.Kish, F.A., Caracci, S.J., Holonyak, N., Jr., Dallesasse, J.M., Hsieh, K.C., Ries, M.J., Smith, S.C., and Burnham, R.D., Appl. Phys. Lett., 59, 1755 (1991).CrossRefGoogle Scholar
3.Maranowski, S.A., Kish, F.A., Caracci, S.J., Holonyak, N., Jr., Dallesasse, J.M., Bour, D.P., and Treat, D.W., Appl. Phys. Lett. 61, 1688 (1992).CrossRefGoogle Scholar
4.Lear, K.L., Choquette, K.D., Schneider, R.P., Jr., Kilcogyn, S.P., and Geib, K.M., Electron Lett. 31, 208 (1995).CrossRefGoogle Scholar
5.Yang, G.M., MacDougal, M.H., Daphus, P.D., Electron Lett. 31, 886 (1995).Google Scholar
6.Choquette, K.D., Schneider, R.P., Crawford, M.H., Geib, K.M., and Figiel, J.J., Electron Lett. 31, 1145 (1995).CrossRefGoogle Scholar
7.Choquette, K.D., Lear, K.L., Schneider, R.P., and Geib, K.M., Appl. Phys. Lett. 66, 3414 (1995).Google Scholar
8.Nickel, H., J. Appl. Phys. 78, 5201 (1995).CrossRefGoogle Scholar
9.Ochiai, M., Giudice, G.E., Temkin, H., Scott, J.W., and Cockerill, T M., Appl. Phys. Lett. 68, 1898 (1996).CrossRefGoogle Scholar
10.Cich, M.J., Zhao, R., Anderson, E.H., and Weber, E.R., J. Appl. Phys. 91, 121 (2002).Google Scholar
11.Alonzo, A.C., Cheng, X-C., McGill, T.C., J. Appl. Phys. 84, 6901 (1998).CrossRefGoogle Scholar
12.Feld, S.A., Loehr, J.P., Sherriff, R.E., Wiemeri, J., and Kaspi, R., IEEE Photo. Tech. Lett. 10, 197 (1998).Google Scholar
13.Naone, R.L. and Coldren, L.A., J. Appl. Phys. 82, 2277 (1997).Google Scholar
14.MacDougal, M.H., Zhao, H., Dapkus, P.D., Ziari, M., and Steier, W.H., Electron. Lett. 30, 1147 (1994).Google Scholar
15.Takamori, T., Takemasa, K., and Kamijoh, T., Appl. Phys. Lett. 69, 659 (1996).CrossRefGoogle Scholar
16.Whipple, R.T.P., Philos. Mag. 45, 1225 (1954).Google Scholar
17.Gilmer, G.H. and Farrell, H.H., J. Appl. Phys. 47, 3792 (1976).CrossRefGoogle Scholar
18.Wang, W.L., Chou, Y.T., and Lee, S., J. Mater. Res. 16, 1967 (2001).Google Scholar
19.Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 520 (1986).Google Scholar
20.Ashby, C.I.H., Sullivan, J.P., Choqette, K.D., Geib, K.M., and Hou, H.Q., J. Appl. Phys. 82, 3134 (1997).Google Scholar