Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:12:22.440Z Has data issue: false hasContentIssue false

The weakest size of precipitated alloys in the micro-regime: The case of duralumin

Published online by Cambridge University Press:  15 May 2017

Kefu Gan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China
Rui Gu
Affiliation:
Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen, People’s Republic of China
Alfonso H.W. Ngan*
Affiliation:
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the microsize regime, all crystalline metals studied to-date exhibit a “smaller-is-stronger” size effect. Here, we report an unusual weakest-size phenomenon in the precipitated alloy duralumin 2025, i.e., below a critical size of ∼7 μm, the strength increases as the size decreases, while above this size, the strength increases toward the bulk value with increasing size. At the critical size, strain-hardening is also slowest and the room-temperature creep is fastest. Interestingly, the reduction of strength at the weakest size is more significant for the peak-aged state of duralumin 2025 than its naturally aged state. Theoretical modeling shows that at the weakest size, both strengthening mechanisms of precipitation hardening and dislocation starvation are ineffective. The present results indicate that the conventional wisdom of precipitation hardening is not applicable in the micro-regime, and the common “smaller-is-stronger” understanding is incorrect when material microstructures impose internal length scales that can affect strength.

Type
Invited Feature Papers
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Jürgen Eckert

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Brenner, S.S.: Tensile strength of whiskers. J. Appl. Phys. 27, 1484 (1956).CrossRefGoogle Scholar
Brenner, S.S.: Plastic deformation of copper and silver whiskers. J. Appl. Phys. 28, 1023 (1957).CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
Dimiduk, D.M., Uchic, M.D., and Parthasarathy, T.A.: Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065 (2005).CrossRefGoogle Scholar
Greer, J. and Nix, W.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B: Condens. Matter Mater. Phys. 73, 245410 (2006).CrossRefGoogle Scholar
Greer, J.R., Weinberger, C.R., and Cai, W.: Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng., A 493, 21 (2008).CrossRefGoogle Scholar
Maaß, R. and Uchic, M.D.: In-situ characterization of the dislocation-structure evolution in Ni micro-pillars. Acta Mater. 60, 1027 (2012).CrossRefGoogle Scholar
Oh, S.H., Legros, M., Kiener, D., and Dehm, G.: In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat. Mater. 8, 95 (2009).CrossRefGoogle Scholar
Senger, J., Weygand, D., Gumbsch, P., and Kraft, O.: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58, 587 (2008).CrossRefGoogle Scholar
Zhou, C., Biner, S.B., and LeSar, R.: Discrete dislocation dynamics simulations of plasticity at small scales. Acta Mater. 58, 1565 (2010).CrossRefGoogle Scholar
Jennings, A.T., Li, J., and Greer, J.R.: Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).CrossRefGoogle Scholar
Ng, K.S. and Ngan, A.H.W.: Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater. 56, 1712 (2008).CrossRefGoogle Scholar
Ng, K.S. and Ngan, A.H.W.: Stochastic theory for jerky deformation in small crystal volumes with pre-existing dislocations. Philos. Mag. 88, 677 (2008).CrossRefGoogle Scholar
Bei, H., Shim, S., George, E., Miller, M., Herbert, E., and Pharr, G.: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).CrossRefGoogle Scholar
Dou, R. and Derby, B.: A universal scaling law for the strength of metal micropillars and nanowires. Scr. Mater. 61, 524 (2009).CrossRefGoogle Scholar
Zaiser, M., Schwerdtfeger, J., Schneider, A.S., Frick, C.P., Clark, B.G., Gruber, P.A., and Arzt, E.: Strain bursts in plastically deforming molybdenum micro- and nanopillars. Philos. Mag. 88, 3861 (2008).CrossRefGoogle Scholar
Parthasarathy, T.A., Rao, S.I., Dimiduk, D.M., Uchic, M.D., and Trinkle, D.R.: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313 (2007).CrossRefGoogle Scholar
Rao, S.I., Dimiduk, D.M., Tang, M., Uchic, M.D., Parthasarathy, T.A., and Woodward, C.: Estimating the strength of single-ended dislocation sources in micron-sized single crystals. Philos. Mag. 87, 4777 (2007).CrossRefGoogle Scholar
Ryu, I., Cai, W., Nix, W.D., and Gao, H.: Stochastic behaviors in plastic deformation of face-centered cubic micropillars governed by surface nucleation and truncated source operation. Acta Mater. 95, 176 (2015).CrossRefGoogle Scholar
Gu, R. and Ngan, A.H.W.: Dislocation arrangement in small crystal volumes determines power-law size dependence of yield strength. J. Mech. Phys. Solids 61, 1531 (2013).CrossRefGoogle Scholar
Wickham, L.K., Schwarz, K.W., and Stölken, J.S.: Rules for forest interactions between dislocations. Phys. Rev. Lett. 83, 4 (1999).CrossRefGoogle Scholar
Kiener, D., Guruprasad, P.J., Keralavarma, S.M., Dehm, G., and Benzerga, A.A.: Work hardening in micropillar compression: In situ experiments and modeling. Acta Mater. 59, 3825 (2011).CrossRefGoogle Scholar
Alcalá, J., Očenášek, J., Nowag, K., Ojos, D.E-D.L., Ghisleni, R., and Michler, J.: Strain hardening and dislocation avalanches in micrometer-sized dimensions. Acta Mater. 91, 255 (2015).CrossRefGoogle Scholar
El-Awady, J.A.: Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat. Commun. 6, 5926 (2015).CrossRefGoogle ScholarPubMed
Lee, S.W., Han, S.M., and Nix, W.D.: Uniaxial compression of fcc Au nanopillars on an MgO substrate: The effects of prestraining and annealing. Acta Mater. 57, 4404 (2009).CrossRefGoogle Scholar
Gu, R. and Ngan, A.H.W.: Effects of pre-straining and coating on plastic deformation of aluminum micropillars. Acta Mater. 60, 6102 (2012).CrossRefGoogle Scholar
Bei, H., Shim, S., Pharr, G.M., and George, E.P.: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).CrossRefGoogle Scholar
Ng, K.S. and Ngan, A.H.W.: Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater. 57, 4902 (2009).CrossRefGoogle Scholar
Ngan, A.H.W., Chen, X.X., Leung, P.S.S., Gu, R., and Gan, K.F.: Size effects of micron-scaled metals—The search continues for materials containing real microstructures. MRS Commun. (2017), doi: 10.1557/mrc.2017.23.CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).CrossRefGoogle Scholar
Ng, K.S. and Ngan, A.H.W.: Deformation of micron-sized aluminium bi-crystal pillars. Philos. Mag. 89, 3013 (2009).CrossRefGoogle Scholar
Kim, Y., Lee, S., Jeon, J.B., Kim, Y.J., Lee, B.J., Oh, S.H., and Han, S.M.: Effect of a high angle grain boundary on deformation behavior of Al nanopillars. Scr. Mater. 107, 5 (2015).CrossRefGoogle Scholar
Maaß, R., Van Petegem, S., Grolimund, D., Van Swygenhoven, H., and Uchic, M.D.: A strong micropillar containing a low angle grain boundary. Appl. Phys. Lett. 91, 131909 (2007).CrossRefGoogle Scholar
Lei, S., Zhang, J.Y., Niu, J.J., Liu, G., Zhang, X., and Sun, J.: Intrinsic size-controlled strain hardening behavior of nanolayered Cu/Zr micropillars. Scr. Mater. 66, 706 (2012).CrossRefGoogle Scholar
Choi, W.S., De Cooman, B.C., Sandlöbes, S., and Raabe, D.: Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars. Acta Mater. 98, 391 (2015).CrossRefGoogle Scholar
Liang, Z.Y. and Huang, M.X.: Deformation twinning in small-sized face-centred cubic single crystals: Experiments and modelling. J. Mech. Phys. Solids 85, 128 (2015).CrossRefGoogle Scholar
Li, L.L., An, X.H., Imrich, P.J., Zhang, P., Zhang, Z.J., Dehm, G., and Zhang, Z.F.: Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scr. Mater. 69, 199 (2013).CrossRefGoogle Scholar
Imrich, P.J., Kirchlechner, C., Motz, C., and Dehm, G.: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater. 73, 240 (2014).CrossRefGoogle Scholar
Wang, S.C., Starink, M.J., and Gao, N.: Precipitation hardening in Al–Cu–Mg alloys revisited. Scr. Mater. 54, 287 (2006).CrossRefGoogle Scholar
Ratchev, P.: Precipitation hardening of an Al–4.2wt%Mg–0.6wt%Cu alloy. Acta Mater. 46, 11 (1998).CrossRefGoogle Scholar
Sha, G., Marceau, R.K.W., Gao, X., Muddle, B.C., and Ringer, S.P.: Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes. Acta Mater. 59, 1659 (2011).CrossRefGoogle Scholar
Parel, T.S., Wang, S.C., and Starink, M.J.: Hardening of an Al–Cu–Mg alloy containing Types I and II S phase precipitates. Mater. Des. 31, S2 (2010).CrossRefGoogle Scholar
Starink, M.J., Gao, N., Davin, L., Yan, J., and Cerezo, A.: Room temperature precipitation in quenched Al–Cu–Mg alloys: A model for the reaction kinetics and yield strength development. Philos. Mag. 85, 1395 (2005).CrossRefGoogle Scholar
Gu, R. and Ngan, A.H.W.: Size effect on the deformation behavior of duralumin micropillars. Scr. Mater. 68, 861 (2013).CrossRefGoogle Scholar
Galindo-Nava, E.I. and Rae, C.M.F.: Microstructure-sensitive modelling of dislocation creep in polycrystalline FCC alloys: Orowan theory revisited. Mater. Sci. Eng., A 651, 116 (2016).CrossRefGoogle Scholar
Gu, R. and Ngan, A.H.W.: Size-dependent creep of duralumin micro-pillars at room temperature. Int. J. Plast. 55, 219 (2014).CrossRefGoogle Scholar
Starink, M.J., Gao, N., and Yan, J.L.: The origins of room temperature hardening of Al–Cu–Mg alloys. Mater. Sci. Eng., A 387–389, 222 (2004).CrossRefGoogle Scholar
Adachi, H., Osamura, K., Ochiai, S., Kusui, J., and Yokoe, K.: Mechanical property of nanoscale precipitate hardening aluminum alloys. Scr. Mater. 44, 1489 (2001).CrossRefGoogle Scholar
Wang, S. and Starink, M.: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193 (2005).CrossRefGoogle Scholar
Zhou, C., Beyerlein, I.J., and LeSar, R.: Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater. 59, 7673 (2011).CrossRefGoogle Scholar
Gu, R., Leung, P.P.S., and Ngan, A.H.W.: Size effect on deformation of duralumin micropillars—A dislocation dynamics study. Scr. Mater. 76, 73 (2014).CrossRefGoogle Scholar
Nix, W.D. and Lee, S.W.: Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philos. Mag. 91, 1084 (2011).CrossRefGoogle Scholar
Orowan, E.: Problems of plastic gliding. Proc. Phys. Soc. 52, 8 (1940).CrossRefGoogle Scholar
Tamler, H., Kanert, O., Alsem, W., and De Hosson, J.T.M.: Dislocation dynamics in aluminium and in aluminium–copper alloys: A nuclear magnetic resonance and transmission electron microscopic study. Acta Metall. 30, 1523 (1982).CrossRefGoogle Scholar
De Hosson, J.T.M., in’t Veld, A.H., Tamler, H., and Kanert, O.: Dislocation dynamics in Al–Li alloys. Mean jump distance and activation length of moving dislocations. Acta Metall. 32, 1205 (1984).CrossRefGoogle Scholar
De Hosson, J.T.M., Kanert, O., and Sleesvyk, A.W.: Dislocations in solids investigated by means of nuclear magnetic resonance. In: Dislocations in Solids, Nabarro, F.R.N. ed. (North Holland, Amsterdam, 1983); pp. 441534.Google Scholar