Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T17:55:56.325Z Has data issue: false hasContentIssue false

Water dissociation on the low-coordinated sites of MgO nanopowders

Published online by Cambridge University Press:  06 February 2019

Fabio Finocchi*
Affiliation:
Sorbonne Université, CNRS-UMR 7588, Institut des Nanosciences de Paris, F-75252 Paris Cedex 05, France
Francia Haque
Affiliation:
Sorbonne Université, CNRS-UMR 7588, Institut des Nanosciences de Paris, F-75252 Paris Cedex 05, France
Stéphane Chenot
Affiliation:
Sorbonne Université, CNRS-UMR 7588, Institut des Nanosciences de Paris, F-75252 Paris Cedex 05, France
Jacques Jupille
Affiliation:
Sorbonne Université, CNRS-UMR 7588, Institut des Nanosciences de Paris, F-75252 Paris Cedex 05, France
Slavica Stankic*
Affiliation:
Sorbonne Université, CNRS-UMR 7588, Institut des Nanosciences de Paris, F-75252 Paris Cedex 05, France
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

The configurations associated with the dissociative adsorption of water on a variety of low-coordinated sites of MgO(100) surfaces, including corners, steps, MgO vacancies, and kinks on 〈010〉 steps, have been studied and assigned by combining infrared spectroscopy and ab initio calculations. Three kinds of MgO powders were examined: powders of very high specific surface area prepared by chemical vapor synthesis and well-defined cubic smoke particles obtained by combustion in either 20:80 or 60:40 O2:Ar mixtures, the latter one involving less defects and smaller particles. It appears that an imperative requirement to obtain a precise characterization of the reactive behavior of defects is to keep the samples in ultra–high vacuum conditions and to control the water partial pressure finely.

Type
Invited Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henderson, M.A.: The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1 (2002).CrossRefGoogle Scholar
Liu, P., Kendelewicz, T., Brown, G.E., and Parks, G.A.: Reaction of water with MgO(100) surfaces. Part I: Synchrotron X-ray photoemission studies of low-defect surfaces. Surf. Sci. 287, 412 (1998).Google Scholar
Altieri, S., Contri, S.F., and Valeri, S.: Hydrolysis at MgO(100)/Ag(100) oxide-metal interfaces studied by O 1s X-ray photoelectron and Mg KL23L23 Auger spectroscopy. Phys. Rev. B 76, 205413 (2007).CrossRefGoogle Scholar
Ferrari, A.M., Casassa, S., and Pisani, C.: Electronic structure and morphology of MgO sub-monolayers at the Ag(001) surface: An ab initio model study. Phys. Rev. B 71, 155404 (2005).CrossRefGoogle Scholar
Cabailh, G., Lazzari, R., Jupille, J., Savio, L., Smerieri, M., Orzelli, A., Vattuone, L., and Rocca, M.: Stoichiometry-dependent chemical activity of supported MgO(100) films. J. Phys. Chem. A 115, 7161 (2011).CrossRefGoogle ScholarPubMed
Abriou, D. and Jupille, J.: Self-inhibition of water dissociation on magnesium oxide surfaces. Surf. Sci. 430, L527 (1999).CrossRefGoogle Scholar
Newberg, J.T., Starr, D.E., Yamamoto, S., Kaya, S., Kendelewicz, T., Mysak, E.R., Soeren Porsgaard, O., Salmeron, M.B., Brown, G.E. Jr., Nilsson, A., and Bluhm, H.: Autocatalytic surface hydroxylation of MgO(100) terrace sites observed under ambient conditions. J. Phys. Chem. C 115, 12864 (2011).CrossRefGoogle Scholar
Coluccia, S., Lavagnino, S., and Marchese, L.: The hydroxylated surface of MgO powders and the formation of surface sites. Mater. Chem. Phys. 18, 445 (1988).CrossRefGoogle Scholar
Finocchi, F., Hacquart, R., Naud, C., and Jupille, J.: Hydroxyl-defect complexes on Hydrated MgO smokes. J. Phys. Chem. C 112, 13226 (2008).CrossRefGoogle Scholar
Savio, L., Smerieri, M., Orzelli, A., Vattuone, L., Rocca, M., Finocchi, F., and Jupille, J.: Common fingerprints of hydroxylated non-polar steps on MgO smoke and MgO films. Surf. Sci. 604, 252 (2010).CrossRefGoogle Scholar
Chizallet, C., Costentin, G., Che, M., Delbecq, F., and Sautet, P.: Infrared characterization of hydroxyl groups on MgO: A periodic and cluster density functional theory study. J. Am. Chem. Soc. 129, 6442 (2007).CrossRefGoogle ScholarPubMed
Duriez, C., Chapon, C., Henry, C.R., and Rickard, J.M.: Structural characterization of MgO(100) surfaces. Surf. Sci. 230, 123 (1990).CrossRefGoogle Scholar
Hacquart, R., Krafft, J-M., Costentin, G., and Jupille, J.: Evidence for emission and transfer of energy from excited edge sites of MgO smokes by photoluminescence experiments. Surf. Sci. 595, 172 (2005).CrossRefGoogle Scholar
Ončák, M., Włodarczyk, R., and Sauer, J.: Water on the MgO(001) surface: Surface reconstruction and ion solvation. J. Phys. Chem. Lett. 6, 2310 (2015).CrossRefGoogle ScholarPubMed
Thomele, D., Gheisi, A.R., Niedermaier, M., Elsässer, M.S., Bernardi, J., Grönbeck, H., and Diwald, O.: Thin water films and particle morphology evolution in nanocrystalline MgO. J. Am. Ceram. Soc. 101, 4994 (2018).CrossRefGoogle ScholarPubMed
Hacquart, R. and Jupille, J.: Morphology of MgO smoke crystallites upon etching in wet environment. J. Cryst. Growth 311, 4598 (2009).CrossRefGoogle Scholar
Knözinger, E., Jacob, K-H., Singh, S., and Hofmann, P.: Hydroxyl groups as IR active surface probes on MgO crystallites. Surf. Sci. 290, 388 (1993).CrossRefGoogle Scholar
Haque, F., Finocchi, F., Chenot, S., Jupille, J., and Stankic, S.: Towards a comprehensive understanding of heterolytic splitting of H2 at MgO surface defects: Site reactivity, proximity effects and co-adsorption of several molecules. J. Phys. Chem. C 122, 1773817747 (2018).CrossRefGoogle Scholar
Haque, F., Chenot, S., Viñes, A.F., Illas, F., Stankic, S., and Jupille, J.: ZnO powders as multi-facet single crystals. Phys. Chem. Chem. Phys. 19, 10622 (2017).CrossRefGoogle ScholarPubMed
Diwald, O., Sterrer, M., and Knözinger, E.: Site selective hydroxylation of the MgO surface. Phys. Chem. Chem. Phys. 4, 2811 (2002).CrossRefGoogle Scholar
Stankic, S., Sternig, A., Finocchi, F., Bernardi, J., and Diwald, O.: Zinc oxide scaffolds on MgO nanocubes. Nanotechnology 21, 355603 (2010).CrossRefGoogle ScholarPubMed
Giordano, L., Goniakowski, J., and Suzanne, J.: Partial dissociation of water molecules in the (3 × 2) water monolayer deposited on the MgO (100) surface. Phys. Rev. Lett. 81, 1271 (1998).CrossRefGoogle Scholar
Odelius, M.: Mixed molecular and dissociative water adsorption on MgO(100). Phys. Rev. Lett. 82, 3919 (1998).CrossRefGoogle Scholar
Delle Site, L., Alavi, A., and Lynden-Bell, R.M.: The structure and spectroscopy of monolayers of water on MgO: An ab initio study. J. Chem. Phys. 113, 3344 (2000).CrossRefGoogle Scholar
Alvim, R.S., Borges, I. Jr., Costa, D.G., and Leitao, A.A.: Density-functional theory simulation of the dissociative chemisorption of water molecules on the MgO(001) surface. J. Phys. Chem. C 116, 738 (2012).CrossRefGoogle Scholar
Costa, D., Chizallet, C., Ealet, B., Goniakowski, J., and Finocchi, F.: Water on extended and point defects at MgO surfaces. J. Chem. Phys. 125, 054702 (2006).CrossRefGoogle ScholarPubMed
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: Quantum Espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).Google ScholarPubMed
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized-gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle ScholarPubMed
Stankic, S., Cottura, M., Demaille, D., Noguera, C., and Jupille, J.: Nucleation and growth concepts applied to a stoichiometric compound formed from a vapor: The case of MgO smoke. J. Cryst. Growth 329, 52 (2011).CrossRefGoogle Scholar
Langel, W. and Parrinello, M.: Hydrolysis at stepped MgO surfaces. Phys. Rev. Lett. 73, 504 (1994).CrossRefGoogle ScholarPubMed
D’Ercole, A. and Pisani, C.: Ab initio study of hydrogen dissociation at a surface divacancy on the (001) MgO surface. J. Chem. Phys. 111, 9743 (1999).CrossRefGoogle Scholar
Ealet, B., Goniakowski, J., and Finocchi, F.: Water dissociation on a defective MgO(100) surface: Role of divacancies. Phys. Rev. B 69, 195413 (2004).CrossRefGoogle Scholar
Finocchi, F. and Goniakowski, J.: Interaction of a water molecule with the O vacancy on the MgO(100) surface. Phys. Rev. B 64, 125426 (2001).CrossRefGoogle Scholar
Alvim, R.D., Borges, I., and Leitao, A.A.: Proton migration on perfect, vacant and doped MgO (100) surfaces: Role of dissociation residual groups. J. Chem. Phys. 122, 21841 (2018).Google Scholar
Richter, N.A., Sicolo, S., Levchenko, S.V., Sauer, J., and Scheffler, M.: Concentration of vacancies at metal-oxide surfaces: Case study of MgO(100). Phys. Rev. Lett. 111, 045502 (2013).CrossRefGoogle Scholar
Supplementary material: File

Finocchi et al. supplementary material

Finocchi et al. supplementary material 1

Download Finocchi et al. supplementary material(File)
File 26.6 KB