Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T12:57:18.616Z Has data issue: false hasContentIssue false

Voids in Silicon by He Implantation: From Basic to Applications

Published online by Cambridge University Press:  31 January 2011

V. Raineri
Affiliation:
CNR IMETEM, I 95121 Catania, Italy
M. Saggio
Affiliation:
STMicroelectronics95121 Catania, Italy
E. Rimini
Affiliation:
INFM and Dipartimento di Fisica dell'Universita‘, I 95129 Catania, Italy
Get access

Abstract

The mechanism of bubble formation when He is implanted into silicon is described. Many experiments are reviewed and several techniques are considered. During implantation and subsequent annealing, complex Hen–Vm clusters are formed, trapping vacancies, while Si self-interstitials recombine directly at the surface. By increasing temperature He atoms out-diffuse, and the entire process produces a supersaturation of vacancies (void formation). Their evolution is studied during isothermal and isochronal annealing, describing the mechanisms involved; that is, direct coalescence or Ostwald ripening. The internal surface is an efficient trap for self-interstitials and for metals. The gettering mechanism is governed by a surface adsorption at low impurity concentration while at high value a silicide phase is observed. The high getter capability is ensured by the large number of traps introduced (1017–1019 cm−3). Finally, voids introduce mid gap energy levels that act as minority carrier recombination centers, providing a powerful method to control lifetime locally in silicon devices. The reviewed results demonstrate that the trap levels are due to the dangling bonds present on the void surface. This property can be used in many applications.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Blackburn, R., Metallurgical Review 11, 159 (1966).Google Scholar
2.Donnelly, S.E., Radiation Effects 90, 1 (1985).CrossRefGoogle Scholar
3.Reed, D.J., Radiation Effects 31, 129 (1977).CrossRefGoogle Scholar
4.Elliman, R.G., Johnson, S.T., Short, K.T., and Williams, J.S., in Ion Implantation and Ion Beam Processing of Materials, edited by Huber, G.K., Holland, D.W., Clayton, C.R., and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, North-Holland, New York, 1984), pp. 229234.Google Scholar
5.Myers, S.M., Stein, H.J., and Follstaedt, D.M., Phys. Rev. B 51, 9742 (1995).CrossRefGoogle Scholar
6.Das, S.K. and Kaminsky, M., Adv. Chem. Ser. 158, 112 (1976).CrossRefGoogle Scholar
7.Griffioen, C.C., Evans, J.H., de Jong, P.C., and van Veen, A., Nucl. Instrum. Methods Phys. Res., Sect. B 27, 417 (1987).CrossRefGoogle Scholar
8.Myers, S.M., Petersen, G.A., and Seager, C.H., J. Appl. Phys. 80, 3717 (1966).CrossRefGoogle Scholar
9.Raineri, V., Solid State Phenomena, 57–58, 43 (1997).CrossRefGoogle Scholar
10.Wong-Leung, J., Ascheron, C.E., Petravic, M., Elliman, R.G., and Williams, J.S., Appl. Phys. Lett. 66, 1231 (1995).CrossRefGoogle Scholar
11.Mohadjeri, B., Williams, J.S., and Wong-Leung, J., Appl. Phys. Lett. 66, 1889 (1995).CrossRefGoogle Scholar
12.Overwijk, M.H.F, Politiek, J., de Kruif, R.C.M., and Zalm, P.C., Nucl. Instrum. Methods Phys. Res., Sect. B 96, 257 (1995).CrossRefGoogle Scholar
13.Myers, S.M. and Petersen, G.A., Phys. Rev. B 57, 7015 (1998).CrossRefGoogle Scholar
14.Raineri, V. and Campisano, S.U., Appl. Phys. Lett. 69, 1783 (1996).CrossRefGoogle Scholar
15.Raineri, V. and Campisano, S.U., Nucl. Instrum. Methods Phys. Res., Sect. B 120, 56 (1996).CrossRefGoogle Scholar
16.Seager, C.H., Myers, S.M., Anderson, R.A., Warren, W.L., and Follstaedt, D.M., Phys. Rev. B 59, 2458 (1994).CrossRefGoogle Scholar
17.Raineri, V., Fallica, P.G., Percolla, G., Battaglia, A., Barbagallo, M., and Campisano, S.U., J. Appl. Phys. 78, 3727 (1995).CrossRefGoogle Scholar
18.Saggio, M., Raineri, V., Letor, R., and Frisina, F., IEEE Electron Device Lett. 18, 333 (1997).CrossRefGoogle Scholar
19.Chu, P.K., Cheung, N.W., Materials Chemistry and Physics 57, 1 (1998).CrossRefGoogle Scholar
20.Alatalo, M., Puska, M.J., and Nieminen, R.M., Phys. Rev. B 46, 12806 (1992).CrossRefGoogle Scholar
21.Corni, F., Calzolari, G., Frabboni, S., Nobili, C., Ottaviani, G., Tonini, R., Cerofolini, G.F., Leone, D., Servidori, M., Brusa, R.S., Karwasz, G.P., Tiengo, N., and Zecca, A., J. Appl. Phys. 85, 1401 (1999).CrossRefGoogle Scholar
22.Brusa, R.S., Karwasz, G.P., Tiengo, N., Zecca, A., Corni, F., Calzolari, G., and Nobili, C., J. Appl. Phys. 85, 2390 (1999).CrossRefGoogle Scholar
23.Corni, F., Nobili, C., Ottaviani, G., Tonini, R., Calzolari, G., Cerofolini, G.F., and Queirolo, G., Phys. Rev. B 56, 7331 (1997).CrossRefGoogle Scholar
24.Tonini, R., Corni, F., Frabboni, S., Ottaviani, G., and Cerofolini, G.F., J. Appl. Phys. 84, 4802 (1998).CrossRefGoogle Scholar
25.Raineri, V., Coffa, S., Szilágyi, E., Gyulai, J., and Rimini, E., Phys. Rev. B 61, 937 (2000).CrossRefGoogle Scholar
26.Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
27.Cerofolini, G.F., Calzolari, G., Corni, F., Frabboni, S., Nobili, C., Ottaviani, G., and Tonini, R., Phy. Rev. B 61, 10183 (2000).CrossRefGoogle Scholar
28.Estreicher, S.K., Weber, J., Derecskei-Kovacs, A., and Marynick, D.S., Phys. Rev. B 55, 5037 (1997).CrossRefGoogle Scholar
29.Davis, G., Phys. Rep. 176, 83 (1989).CrossRefGoogle Scholar
30.Davies, G., Lightowlers, E.C., and Ciedanawaska, Z.F., J. Phys. C: Solid State Phys. 20, 191 (1987).CrossRefGoogle Scholar
31.Reed, D.J., Radiation Effects 31, 129 (1977).CrossRefGoogle Scholar
32.Weldon, M.K., Collot, M., Chabal, Y.J., Venezia, V.C., Agarwal, A., Haynes, T.E., Eaglesham, D.J., Christman, S.B., and Chaban, E.E., Appl. Phys. Lett. 73, 3721 (1998).CrossRefGoogle Scholar
33.Bruel, M.K., Electron. Lett. 31, 1201 (1995).CrossRefGoogle Scholar
34.Libertino, S., Benton, J.L., Jacobson, D.C., Eaglesham, D.J., Poate, J.M., Coffa, S., Fuochi, P.G., and Lavalle, M., Appl. Phys. Lett. 71, 389 (1997).CrossRefGoogle Scholar
35.Libertino, S., Coffa, S., Benton, J.L., Halliburton, K., and Eaglesham, D.J., Nucl. Instrum. Methods Phys. Res., Sect. B 148, 247 (1999).CrossRefGoogle Scholar
36.Benton, J.L., Libertino, S., Kringoi, P., Eaglesham, D.J., Poate, J.M., and Coffa, S., J. Appl. Phys. 82, 120 (1997).CrossRefGoogle Scholar
37.Roqueta, F., Grob, A., Grob, J.J., Jerisian, R., Stoquert, J.P., and Ventura, L., Nucl. Instrum. Methods Phys. Res., Sect. B 147, 298 (1999).CrossRefGoogle Scholar
38.Christion, J.W., The Theory of Transformation in Metals and Alloys, 1st ed. (Pergamon Press, New York, 1965), Chap. X.Google Scholar
39.Brusa, R.S., Karwasz, G.P., Tiengo, N., Zecca, A., Corni, F., Calzolari, G., and Nobili, C., J. Appl. Phys. 85, 2390 (1999).CrossRefGoogle Scholar
40.Hirth, J.P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968), p. 145.Google Scholar
41.Stolk, P., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).CrossRefGoogle Scholar
42.Chandrasekhar, S., Rev. Mod. Phys. 15, 1 (1943).CrossRefGoogle Scholar
43.Kaletta, D., Radiation Effects 78, 245 (1983).CrossRefGoogle Scholar
44.Raineri, V., Saggio, M., Frisina, F., and Rimini, E., in Proc. Ion Implantation Technology 1998 (IEEE, 1999), p. 130.Google Scholar
45.Follstaedt, D.M., Appl. Phys. Lett. 62, 1116 (1993).CrossRefGoogle Scholar
46.Eaglesham, D.J., White, A.E., Feldman, L.C., Moriga, N., and Jacobson, D.C., Phys. Rev. Lett. 70, 1643 (1993).CrossRefGoogle Scholar
47.Heyraud, J.C. and Metois, J.J., Surf. Sci. 128, 334 (1983).CrossRefGoogle Scholar
48.Herring, C., in Structure and Properties of Solid Surfaces, edited by Gomer, R.G. and Smith, C.S. (University of Chicago Press, Chicago, IL, 1953).Google Scholar
49.Wulff, G., Kristallogr, Z.. Mineral 34, 449 (1901).Google Scholar
50.Raineri, V., Coffa, S., Saggio, M., Frisina, F., and Rimini, E., Nucl. Instrum. Methods Phys. Res., Sect. B 149, 292 (1999).CrossRefGoogle Scholar
51.Myers, S.M., Follstaedt, D.M., and Bishop, D.M., in Materials Synthesis and Processing Using Ion Beams, edited by Culbertson, R.S., Holland, O.W., Jones, K.S., and Maex, K. (Mater. Res. Soc. Symp. Proc. 316, Pittsburgh, PA, 1994), pp. 3338.Google Scholar
52.Wong-Leung, J., Nygren, E., and Williams, J.S., Appl. Phys. Lett. 67, 416 (1995).CrossRefGoogle Scholar
53.Myers, S.M., Follstaedt, D.M., Petersen, G.A., Seager, C.H., Stein, H.J., and Wampler, W.R., Nucl. Instrum. Methods Phys. Res., Sect. B 106, 379 (1995).CrossRefGoogle Scholar
54.Myers, S.M. and Follstaedt, D.M., J. Appl. Phys. 79, 1337 (1996).CrossRefGoogle Scholar
55.Myers, S.M., Petersen, G.A., Follstaedt, D.M., Headley, T.J., Michael, J.R., and Seager, C.H., Nucl. Instrum. Methods Phys. Res., Sect. B 43, 120 (1996).Google Scholar
56.Raineri, V., Solid State Phenomena 57–58, 43 (1997).CrossRefGoogle Scholar
57.Cacciato, A., Camalleri, C.M., Franco, G., Raineri, V., and Coffa, S., J. Appl. Phys. 80, 4322 (1996).CrossRefGoogle Scholar
58.Hoelzl, R., Range, K.J., Fabry, L., Hage, J., and Raineri, V., Mater. Sci. Eng. B 73, 95 (2000).CrossRefGoogle Scholar
59.Lombardo, S., Pinto, A., Raineri, V., Ward, P., La Rosa, G., Privitera, G., and Campisano, S.U., IEEE Electron Device Lett. 17, 485 (1996).CrossRefGoogle Scholar
60.Himpsel, F.J., Surf. Sci. Rep. 12, 1 (1990).CrossRefGoogle Scholar
61.Raineri, V., Saggio, M., Frisina, F., and Rimini, E., Solid State Electronics 42 (1998) 2295.CrossRefGoogle Scholar
62.Raineri, V., Fallica, G., and Libertino, S., J. Appl. Phys. 79, 9012 (1996).CrossRefGoogle Scholar
63.Catania, M., Frisina, F., Tavolo, N., Ferla, G., Coffa, S., and Campisano, S.U., IEEE Trans. Electron Devices 39, 2745 (1992).CrossRefGoogle Scholar
64.Jayant Baliga, B. and Sun, E., IEEE Trans. Electron Devices 24, 685 (1977).CrossRefGoogle Scholar
65.Mogro-Campero, A., Love, R.P., Chang, M.F., and Dyer, R., IEEE Trans. Electron Devices 33, 1667 (1986).CrossRefGoogle Scholar
66.Hallen, A. and Bakowsky, M., Solid State Electronics 32, 1033 (1989).CrossRefGoogle Scholar
67.Konishi, Y., Onishi, Y., Momota, S., and Sakurai, K., in Proc. IPSD'96, edited by Salama, C.A.T and Williams, R.K. (IEEE, New Jersey, 1996).Google Scholar
68.Coffa, S., Magrí, A., Frisina, F., and Privitera, V., IEEE Trans. Electron Devices 43, 836 (1995).CrossRefGoogle Scholar
69.ATLAS User's Guide, Ver. 4.0.3 (Silvaco, 1997).Google Scholar