Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T10:31:26.989Z Has data issue: false hasContentIssue false

Viscoelastic behavior of a soda-lime-silica glass in the 293–833 K range by micro-indentation

Published online by Cambridge University Press:  01 March 2006

Haixia Shang
Affiliation:
Laboratoire de Mecanique Appliquee de l’Universite de Rennes 1, LARMAUR, FRE-CNRS 2717, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Tanguy Rouxel*
Affiliation:
Laboratoire de Mecanique Appliquee de l’Universite de Rennes 1, LARMAUR, FRE-CNRS 2717, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Marc Buckley
Affiliation:
Laboratoire de Mecanique Appliquee de l’Universite de Rennes 1, LARMAUR, FRE-CNRS 2717, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Cedric Bernard
Affiliation:
Laboratoire de Mecanique Appliquee de l’Universite de Rennes 1, LARMAUR, FRE-CNRS 2717, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The viscoelastic behavior of a soda-lime silica glass (a standard window glass) was investigated by means of Vickers indentation from room temperature to 833 K. Hardness values decrease gradually from 293 to 673 K and drop rapidly above 673 K. The flow kinetics of the glass at high temperature was analyzed in the light of atomic force microscopy observations. It was observed that densification significantly contributes to the permanent deformation at low temperatures, whereas volume conservative flow played a more and more important role as temperature was increased. Master curves of the relaxation modulus and the creep compliance were obtained from constant-rate and constant-load indentation experiments, respectively. A major finding was that the viscous flow process is nonlinear, with a sharp decrease of the apparent viscosity as the mean contact pressure increases.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lucas, G.E., Pendleton, C.: Time-dependent flow properties from indentation tests. J. Nucl. Mater. 104, 1539 (1981).CrossRefGoogle Scholar
2.Cook, R.F., Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).CrossRefGoogle Scholar
3.Lawn, B.: Fracture of Brittle Solids (Cambridge Univ. Press, Cambridge, UK, 1993), pp. 249, 304.CrossRefGoogle Scholar
4.Cseh, G., Chinh, N.Q., Tasnádi, P., Szommer, P., Juhász, A.: Indentation test for the investigation of plasticity of glasses. J. Mater. Sci. 32, 1733 (1997).CrossRefGoogle Scholar
5.Grau, P., Berg, G., Meinhard, H., Mosch, S.: Strain rate dependence of the hardness of glass and Meyer’s law. J. Am. Ceram. Soc. 81, 1557 (1998).CrossRefGoogle Scholar
6.Cseh, G., Chinh, N.Q., Juhász, A.: Indentation curves and viscosity measurements on glasses. J. Mater. Sci. Lett. 17, 1207 (1998).CrossRefGoogle Scholar
7.Schuh, C.A., Nieh, T.G.: A Survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).CrossRefGoogle Scholar
8.Bourhis, E. Le, Rouxel, T.: Indentation response of glass with temperature. J. Non-Cryst. Solids 316, 153 (2003).CrossRefGoogle Scholar
9.Shang, H.X., Rouxel, T.: Creep behavior of soda-lime glass in the 100–500 K temperature range by indentation creep test. J. Am. Ceram. Soc. 88, 2625 (2005).CrossRefGoogle Scholar
10.Watanabe, T., Puratsubaki, K., Benino, Y., Saitoh, H., Komatsu, T.: Hardness and elastic properties of Bi2O3-based glasses. J. Mater. Sci. 36, 2474 (2001).Google Scholar
11.Westbrook, J.H.: The temperature dependence of hardness of some common oxides. Rev. Hautes Tempér. Réfract. 3, 47 (1966).Google Scholar
12.Neely, J.E., Mackenzie, J.D.: Hardness and low-temperature deformation of silica glass. J. Mater. Sci. 4, 603 (1968).CrossRefGoogle Scholar
13.Douglas, R.W.: Some comments on indentation tests on glass. J. Soc. Glass Technol. 42, 145T (1958).Google Scholar
14.Simmons, J.H., Ochoa, R., Simmons, K.D., Mills, J.J.: Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures. J. Non-Cryst. Solids 105, 313 (1988).CrossRefGoogle Scholar
15.Li, J.H., Uhlmann, D.R.: The flow of glass at high stress levels I. Non-Newtonian behavior of homogeneous 0.08 Rb2O·0.92 SiO2 glasses. J. Non-Cryst. Solids 3, 127 (1970).CrossRefGoogle Scholar
16.Guin, J.P., Rouxel, T., Keryvin, V., Sangleboeuf, J.C., Serre, I., Lucas, J.: Indentation creep of Ge–Se chalcogenide glasses below Tg: Elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids 298, 260 (2002).CrossRefGoogle Scholar
17.Westbrook, J.H., Jorgensen, P.J.: Indentation creep of solids. Trans. AIME 233, 425 (1965).Google Scholar
18.Westbrook, J.H. Some effects of adsorbed water in the plastic deformation of non-metallic solids, in Environment Sensitive Mechanical Behavior, edited by Westwood, A.R.C. and Stoloff, N.S. (Gordon Beach, NY, 1966), p. 247.Google Scholar
19.Griggs, D.T.: Hydrolytic weakening of quartz and other silicates. J. R. Astron. Soc. 14, 19 (1967).Google Scholar
20.Radok, J.R.M.: Viscoelastic stress analysis. Quart. Appl. Math. 15, 198 (1957).CrossRefGoogle Scholar
21.Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).CrossRefGoogle Scholar
22.Ting, T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).CrossRefGoogle Scholar
23.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq’s problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
24.Matzke, H., Linker, G.: Fracture toughness and leaching behavior of ion bombarded waste glasses. J. Nucl. Instrum. Meth. Phys. Res. B1, 569 (1984).CrossRefGoogle Scholar
25.Sakai, M., Shimizu, S.: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).CrossRefGoogle Scholar
26.Brink, J.P.V.D.: Master stress relaxation function of silica glasses. J. Non-Cryst. Solids 196, 210 (1996).CrossRefGoogle Scholar
27.DeBast, J., Gilard, P.: Comptes rendus de recherches. Centre Technique et Scientifique de l’Industrie Belge du Verre. 1, 32 (1965).Google Scholar
28.Gy, R., Dufrène, L., Labrot, M.: New insights into the viscoelasticity of glass. J. Non-Cryst. Solids 175, 103 (1994).CrossRefGoogle Scholar
29.Rekhson, S.M.: Viscosity and stress relaxation in commercial glasses in the glass transition region. J. Non-Cryst. Solids 38–39, 457 (1980).CrossRefGoogle Scholar
30.Rouxel, T., Sangleboeuf, J.C.: The brittle to ductile transition in a soda–lime–silica glass. J. Non-Cryst. Solids 271, 224 (2000).CrossRefGoogle Scholar
31.Shen, J.W., Green, D.J., Tressler, R.E., Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids 324, 277 (2003).CrossRefGoogle Scholar