Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T07:44:46.442Z Has data issue: false hasContentIssue false

Variation of crystal quality and residual stresses in epitaxially grown thin film systems induced by ion implantation and annealing

Published online by Cambridge University Press:  14 May 2013

Mei Liu
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales, New South Wales 2052, Australia
Haihui Ruan
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales, New South Wales 2052, Australia
Liangchi Zhang*
Affiliation:
School of Mechanical and Manufacturing Engineering, The University of New South Wales, New South Wales 2052, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the semiconductor industry, ion implantation and the subsequent annealing have ubiquitously been used to mitigate residual stresses and crystallographic defects in a film-on-substrate system. However, the relationship between crystal quality and residual stresses induced by lattice mismatch and disparate thermal expansions has not yet been understood. This paper aims to clarify the mist through an in-depth investigation into the stress and microstructure variations in the ion implantation and annealing processes. It was found that a higher-energy implantation with a higher ion dose density leads to a more significant relief of residual stresses. However, a higher annealing temperature, which results in fewer defects, will bring about greater residual stress regeneration. To achieve a higher crystal quality but lower stresses, it is necessary to enable the ions to penetrate through the film to cause substrate expansion, such that the mismatch between the film and substrate is mitigated and the high temperature annealing can be utilized to minimize the interface defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, UK, 2004).CrossRefGoogle Scholar
Roder, C., Einfeldt, S., Figge, S., Paskova, T., Hommel, D., Paskov, P.P., Monemar, B., Behn, U., Haskell, B.A., Fini, P.T., and Nakamura, S.: Stress and wafer bending of a-plane GaN layers on r-plane sapphire substrates. J. Appl. Phys. 100(10), 103511 (2006).CrossRefGoogle Scholar
Anzalonea, R., Camarda, M., Locke, C., Carballo, J., Piluso, N., La Magna, A., Volinsky, A.A., Saddowb, S.E., and La Viab, F.: Stress nature investigation on heteroepitaxial 3C–SiC film on (100) Si substrates. J. Mater. Res. 1(1), 1 (2012).Google Scholar
Maurice, J.L., Durand, O., Drouet, M., and Contour, J.P.: Microstructure and strain relaxation in YBa2Cu3O7 epitaxial thin films. Thin Solid Films 319(1), 211 (1998).CrossRefGoogle Scholar
Lei, C., Jia, C., Siegert, M., and Urban, K.: Investigation of {111} stacking faults and nanotwins in epitaxial BaTiO3 thin films by high-resolution transmission electron microscopy. Philos. Mag. Lett. 80(6), 371 (2000).CrossRefGoogle Scholar
Liu, L.L., Zhang, Y.S., and Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning. I. Critical thickness. J. Appl. Phys. 101(6), 063501 (2007).CrossRefGoogle Scholar
Maree, P.M.J., Barbour, J.C., Vanderveen, J.F., Kavanagh, K.L., Bullelieuwma, C.W.T., and Viegers, M.P.A.: Generation of misfit dislocations in semiconductors. J. Appl. Phys. 62(11), 4413 (1987).CrossRefGoogle Scholar
Freund, L.B.: Dislocation mechanisms of relaxation in strained epitaxial-films. MRS Bull. 17(7), 52 (1992).CrossRefGoogle Scholar
Freund, L.B.: The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. J. Mech. Phys. Solids 38(5), 657 (1990).CrossRefGoogle Scholar
Ning, X., Chien, F., Pirouz, P., Yang, J., and Khan, M.A.: Growth defects in GaN films on sapphire: The probable origin of threading dislocations. J. Mater. Res. 11(3), 580 (1996).CrossRefGoogle Scholar
Iborra, E., Olivares, J., Clement, M., Vergara, L., Sanz-Hervás, A., and Sangrador, J.: Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators, A 115(2), 501 (2004).CrossRefGoogle Scholar
Onga, S., Yoshii, T., Hatanaka, K., and Yasuda, Y.: Effects of crystalline defects on electrical-properties in silicon films on sapphire. Jpn. J. Appl. Phys. 15, 225 (1976).CrossRefGoogle Scholar
Smith, C.S.: Piezoresistance effect in Germanium and silicon. Phys. Rev. 94(1), 42 (1954).CrossRefGoogle Scholar
Lau, S.S., Matteson, S., Mayer, J.W., Revesz, P., Gyulai, J., Roth, J., Sigmon, T.W., and Cass, T.: Improvement of crystalline quality of epitaxial Si layers by ion-implantation techniques. Appl. Phys. Lett. 34(1), 76 (1979).CrossRefGoogle Scholar
Paine, D.C., Howard, D.J., Stoffel, N.G., and Horton, J.A.: The growth of strained Si1-XGex alloys on (001) silicon using solid-phase epitaxy. J. Mater. Res. 5(5), 1023 (1990).CrossRefGoogle Scholar
Liu, M., Zhang, L.C., Brawley, A., Atanackovic, P., and Duvall, S.: Determining the complete residual stress tensors in SOS hetero-epitaxial thin film systems by the technique of x-ray diffraction. Key Eng. Mater. 443, 742 (2010).CrossRefGoogle Scholar
Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93(1), 278 (2003).CrossRefGoogle Scholar
Bayati, M.R., Molaei, R., Narayan, R.J., Narayan, J., Zhou, H., and Pennycook, S.J.: Domain epitaxy in TiO2/alpha-Al2O3 thin film heterostructures with Ti2O3 transient layer. Appl. Phys. Lett. 100(25), 251606 (2012).CrossRefGoogle Scholar
Abrahams, M.S., Buiocchi, C.J., Corboy, J.F., and Cullen, G.W.: Misfit dislocations in heteroepitaxial Si on sapphire. Appl. Phys. Lett. 28(5), 275 (1976).CrossRefGoogle Scholar
Liu, M., Ruan, H.H., Zhang, L.C., and Moridi, A.: Effects of misfit dislocation and film-thickness on the residual stresses in epitaxial thin film systems: Experimental analysis and modelling. J. Mater. Res. 27(21), 2737 (2012).CrossRefGoogle Scholar
Cristoloveanu, S.: Silicon films on sapphire. Rep. Prog. Phys. 50(3), 327 (1987).CrossRefGoogle Scholar
Anidow, M.: Studies of Heteroepitaxial Films of Silicon and Cadmium Telluride on Sapphire (Liverpool University, Liverpool, UK, 1989).Google Scholar
Hamarthibault, S. and Trilhe, J.: Transmission electron observations of the early stage of epitaxial-growth of silicon on sapphire. J. Electrochem. Soc. 128(3), 581 (1981).CrossRefGoogle Scholar
McKenzie, W.R., Domyo, H., Ho, T., and Munroe, P.R.: Re-crystallisation of amorphous silicon in the production of low defect density silicon on sapphire thin films. Microsc. Microanal. 11(Suppl 2), 2 (2005).CrossRefGoogle Scholar
Aindow, M., Batstone, J.L., Pfeiffer, L., Phillips, J.M., and Pond, R.C.: The effect of rapid thermal annealing on the dislocation-structure of silicon on sapphire. MRS Proc. 138, 373 (1989).CrossRefGoogle Scholar
Amano, J. and Carey, K.W.: Low-defect-density silicon on sapphire. J. Cryst. Growth 56(2), 296 (1982).CrossRefGoogle Scholar
Ohmura, Y., Inoue, T., and Yoshi, T.: A Raman-study of Si-implanted silicon on sapphire. J Appl Phys. 54(11), 6779 (1983).CrossRefGoogle Scholar
Bolotov, V.V., Efremov, M.D., Karavaev, V.V., Volodin, V.A., and Golomedov, A.V.: Study of stress-relaxation in implanted silicon on sapphire structures using Raman-spectroscopy. Thin Solid Films 208(2), 217 (1992).CrossRefGoogle Scholar
Dubbelday, W.B. and Kavanagh, K.L.: Oscillatory strain relaxation in solid phase epitaxially regrown silicon on sapphire, in First International Workshop on Lattice-Mismatched and Heterovalent Thin Film Epitaxy, edited by Fitzgerald, E.A.. United Engineering Foundation (U.S.) (TMS, the University of Michigan, U.S. 1999), pp. 13.Google Scholar
Misra, D. and Swain, P.: Strain relaxation in SiGe due to process induced defects and their subsequent annealing behavior. Microelectron. Reliab. 38(10), 1611 (1998).CrossRefGoogle Scholar
Mantl, S., Holländer, B., Liedtke, R., Mesters, S., Herzog, H., Kibbel, H., and Hackbarth, T.: Strain relaxation of epitaxial SiGe layers on Si (100) improved by hydrogen implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 147(1), 29 (1999).CrossRefGoogle Scholar
Trinkaus, H., Holländer, B., Mantl, S., Herzog, H.J., Kuchenbecker, J., and Hackbarth, T.: Strain relaxation mechanism for hydrogen-implanted SiGe/Si (100) heterostructures. Appl. Phys. Lett. 76, 3552 (2000).CrossRefGoogle Scholar
DeWolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11(2), 139 (1996).Google Scholar
Englert, T., Abstreiter, G., and Pontcharra, J.: Determination of existing stress in silicon films on sapphire substrate using Raman-spectroscopy. Solid State Electron. 23(1), 31 (1980).CrossRefGoogle Scholar
Narayan, J.: Ion-implantation damage and its annealing phenomena in semiconductors. JOM 36(12), 52 (1984).Google Scholar
Gibbons, J.F.: Ion implantation in semiconductors .2. Damage production and annealing. Pr Inst. Electr. Elect. 60(9), 1062 (1972).CrossRefGoogle Scholar
Moridi, A., Ruan, H.H., Zhang, L.C., and Liu, M.: A finite element simulation of residual stresses induced by thermal and lattice mismatch in thin films, in Proceedings of AES-ATEMA’2011 Seventh International Conference, on Advances and Trends in Engineering Materials and Their Applications, edited by Haddad, Y.M. (Advanced Engineering Solutions, Ottawa, Canada, 2011), pp. 57.Google Scholar