Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T15:05:29.099Z Has data issue: false hasContentIssue false

Vanadium oxide nanowires for Li-ion batteries

Published online by Cambridge University Press:  13 July 2011

Liqiang Mai*
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China; and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
Xu Xu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Lin Xu
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Chunhua Han
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
Yanzhu Luo
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Vanadium oxide nanowires have gained increasing interest as the electrode materials for Li-ion batteries. This article presents the recent developments of vanadium oxide nanowire materials and devices in Li-ion batteries. First, we will describe synthesis and construction of vanadium oxide nanowires. Then, we mainly focus on the electrochemical performances of vanadium oxide nanowires, such as VO2, V2O5, hydrated vanadium oxides, LiV3O8, silver vanadium oxides, etc. Moreover, design and in situ characterization of the single nanowire electrochemical device are also discussed. The challenges and opportunities of vanadium oxide nanowire electrode materials will be discussed as a conclusion to push the fundamental and practical limitations of this kind of nanowire materials for Li-ion batteries.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

1.Goodenough, J.B.: Cathode materials: A personal perspective. J. Power Sources 174, 996 (2007).CrossRefGoogle Scholar
2.Ma, M., Chernova, N.A., Toby, B.H., Zavalij, P.Y., and Whittingham, M.S.: Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2. J. Power Sources 165, 517 (2007).CrossRefGoogle Scholar
3.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).Google Scholar
4.Enjalbert, R. and Galy, J.: A refinement of the structure of V2O5. Acta Crystallogr. C 42, 1469 (1986).Google Scholar
5.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).Google Scholar
6.Ganesan, M.: Studies on the effect of titanium addition on LiCoO2. Ionics 15, 609 (2009).CrossRefGoogle Scholar
7.Yang, P. and Lieber, C.M.: Nanorod-superconductor composites: A pathway to high critical current density materials. Science 273, 1836 (1996).CrossRefGoogle Scholar
8.Kim, D.K., Muralidharan, P., Lee, H.W., Ruffo, R., Yang, Y., Chan, C.K., Peng, H.L., Huggins, R.A., and Cui, Y.: Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948 (2008).Google Scholar
9.Lee, H.W., Muralidharan, P., Ruffo, R., Mari, C.M., Cui, Y., and Kim, D.K.: Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852 (2010).CrossRefGoogle ScholarPubMed
10.Hosono, E., Matsuda, H., Saito, T., Kudo, T., Ichihara, M., Honma, I., and Zhou, H.S.: Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of Li ion battery. J. Power Sources 195, 7098 (2010).Google Scholar
11.Whittingham, M.S.: The role of ternary phases in cathode reactions. J. Electrochem. Soc. 123, 315 (1976).Google Scholar
12.Chernova, N.A., Roppolo, M., Dillonb, A.C., and Whittingham, M.S.: Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 10, 2526 (2009).CrossRefGoogle Scholar
13.Wang, Y. and Cao, G.Z.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).Google Scholar
14.Wu, C.Z. and Xie, Y.: Promising vanadium oxide and hydroxide nanostructures: From energy storage to energy saving. Energy Environ. Sci. 3, 1191 (2010).Google Scholar
15.Zhai, T.Y., Liu, H.M., Li, H.Q., Fang, X.S., Liao, M.Y., Li, L., Zhou, H.S., Koide, Y., Bando, Y., and Golberg, D.: Centimeter-long V2O5 nanowires: From synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 22, 2547 (2010).CrossRefGoogle ScholarPubMed
16.Kim, M.H., Lee, B., Lee, S., Larson, C., Baik, J.M., Yavuz, C.T., Seifert, S., Vajda, S., Winans, R.E., Moskovits, M., Stucky, G.D., and Wodtke, A.M.: Growth of metal oxide nanowires from supercooled liquid nanodroplets. Nano Lett. 9, 4138 (2009).Google Scholar
17.Takahashi, K., Limmer, S.J., Wang, Y., and Cao, G.Z.: Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. J. Phys. Chem. B 108, 9795 (2004).Google Scholar
18.Cheng, Y., Wong, T.L., Ho, K.M., and Wang, N.: The structure and growth mechanism of VO2 nanowires. J. Cryst. Growth 311, 1571 (2009).Google Scholar
19.Velazquez, J.M. and Banerjee, S.: Catalytic growth of single-crystalline V2O5 nanowire arrays. Small 5, 1025 (2009).CrossRefGoogle ScholarPubMed
20.Wu, M.C. and Lee, C.S.: Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport. J. Solid State Electrochem. 182, 2285 (2009).Google Scholar
21.Pan, A.Q., Zhang, J.G., Nie, Z.M., Cao, G.Z., Arey, B.W., Li, G.S., Liang, S.Q., and Liu, J.: Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193 (2010).CrossRefGoogle Scholar
22.Glushenkov, A.M., Stukachev, V.I., Hassan, M.F., Kuvshinov, G.G., Liu, H.K., and Chen, Y.: A novel approach for real mass transformation from V2O5 particles to nanorods. Cryst. Growth Des. 8, 3661 (2008).Google Scholar
23.Wang, Y., Zhang, H.J., Lim, W.X., Lin, J.Y., and Wong, C.C.: Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 21, 2362 (2011).Google Scholar
24.Ban, C. and Whittingham, M.S.: Nanoscale single-crystal vanadium oxides with layered structure by electrospinning and hydrothermal methods. Solid State Ionics 179, 1721 (2008).Google Scholar
25.Ban, C., Chernova, N.A., and Whittingham, M.S.: Electrospun nano-vanadium pentoxide cathode. Electrochem. Commun. 11, 522 (2009).Google Scholar
26.Viswanathamurthi, P., Bhattarai, N., Kim, H.K., and Lee, D.R.: Vanadium pentoxide nanofibers by electrospinning. Scr. Mater. 49, 577 (2003).CrossRefGoogle Scholar
27.Yu, D.M., Chen, C.G., Xie, S.H., Liu, Y.Y., Park, K., Zhou, X.Y., Zhang, Q.F., Li, J.Y., and Cao, G.Z.: Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning. Energy Environ. Sci. 4, 858 (2011).CrossRefGoogle Scholar
28.Mai, L.Q., Xu, L., Han, C.H., Xu, X., Luo, Y.Z., Zhao, S.Y., and Zhao, Y.L.: Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for Lithium ion batteries. Nano Lett. 10, 4750 (2010).CrossRefGoogle ScholarPubMed
29.Whang, D., Jin, S., Wu, Y., and Lieber, C.M.: Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255 (2003).CrossRefGoogle Scholar
30.Whang, D., Jin, S., and Lieber, C.M.: Nanolithography using hierarchically assembled nanowire masks. Nano Lett. 3, 951 (2003).Google Scholar
31.Mai, L.Q., Gu, Y.H., Han, C.H., Hu, B., Chen, W., Zhang, P.C., Xu, L., Guo, W.L., and Dai, Y.: Orientated Langmuir-Blodgett assembly of VO2 nanowires. Nano. Lett. 9, 826 (2009).Google Scholar
32.Mai, L.Q., Chen, W., Xu, Q., Peng, J.F., and Zhu, Q.Y.: Low-cost synthesis of novel vanadium dioxide nanorods. Int. J. Nanosci. 3, 225 (2004).Google Scholar
33.Wei, M.D., Sugihara, H., Honma, I., Ichihara, M., and Zhou, H.S.: A new metastable phase of crystallized V2O4·0.25 H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 17, 2964 (2005).Google Scholar
34.Galy, J.: Vanadium pentoxide and vanadium oxide bronzes—Structural chemistry of single (S) and double (D) layer MxV2O5 phases. J. Solid State Chem. 100, 229 (1992).CrossRefGoogle Scholar
35.Chen, Z.J., Gao, S.K., Jiang, L.L., Wei, M.D., and Wei, K.M.: Crystalline VO2 (B) nanorods with a rectangular cross-section. Mater. Chem. Phys. 121, 254 (2010).Google Scholar
36.Zhou, F., Zhao, X.M., Xu, H., and Yuan, C.G.: Hydrothermal synthesis of metastable VO2 nanorods as cathode materials for lithium ion batteries. Chem. Lett. 11, 1280 (2006).Google Scholar
37.Armstrong, G., Canales, J., Armstrong, A.R., and Bruce, P.G.: The synthesis and lithium intercalation electrochemistry of VO2 (B) ultra-thin nanowires. J. Power Sources 178, 723 (2008).Google Scholar
38.Chen, W., Mai, L.Q., Qi, Y.Y., and Dai, Y.: One-dimensional nanomaterials of vanadium and molybdenum oxides. J. Phys. Chem. Solids. 67, 896 (2006).CrossRefGoogle Scholar
39.Chen, W., Xu, Q., Hu, Y., Mai, L., and Zhu, Q.: Effect of modification by poly (ethylene oxide)on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films. J. Mater. Chem. 12, 1926 (2002).Google Scholar
40.Chou, S.L., Wang, J.Z., Sun, J.Z., Wexler, D., Forsyth, M., Liu, H.K., MacFarlane, D.R., and Dou, S.X.: High capacity, safety, and enhanced cyclability of lithium metal battery using a V2O5 nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 20, 7044 (2008).Google Scholar
41.Chan, C.K., Peng, H., Twesten, R.D., Jarausch, K., Zhang, X.F., and Cui, Y.: Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Lett. 7, 490 (2007).Google Scholar
42.Qiao, H., Zhu, X., Zheng, Z., Liu, L., and Zhang, L.: Synthesis of V3O7·H2O nanobelts as cathode materials for lithium–ion batteries. Electrochem. Commun. 8, 21 (2006).Google Scholar
43.Gao, S.K., Chen, Z.J., Wei, M.D., Wei, K.M., and Zhou, H.S.: Single crystal nanobelts of V3O7·H2O: A lithium intercalation host with a large capacity. Electrochim. Acta 54, 1115 (2009).Google Scholar
44.Zhang, Y.F., Liu, X.H., Xie, G.Y., Yu, L., Yi, S.P., Hu, M.J., and Huang, C.: Hydrothermal synthesis, characterization, formation mechanism and electrochemical property of V3O7·H2O single-crystal nanobelts. Mater. Sci. Eng., B 175, 164 (2010).Google Scholar
45.Li, B.X., Xu, Y., Rong, G.X., Jing, M., and Xie, Y.: Vanadium pentoxide nanobelts and nanorolls: From controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology 17, 2560 (2006).CrossRefGoogle ScholarPubMed
46.Petkov, V., Trikalitis, P.N., Bozin, E.S., Billinge, S.J.L., Vogt, T., and Kanatzidis, M.G.: Structure of V2O5.nH2O xerogel solved by the atomic pair distribution function technique. J. Am. Chem. Soc. 124, 10157 (2002).Google Scholar
47.Liu, H.M., Wang, Y.G., Wang, K.X., Wang, Y.R., and Zhou, H.S.: Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. J. Power Sources 192, 668 (2009).CrossRefGoogle Scholar
48.Sakunthala, A., Reddy, M.V., Selvasekarapandian, S., Chowdari, B.V.R., and Christopher Selvin, P.: Preparation, characterization, and electrochemical performance of lithium trivanadate rods by a surfactant-assisted polymer precursor method for lithium batteries. J. Phys. Chem. C 114, 8099 (2010).Google Scholar
49.Semenenko, D.A., Itkis, D.M., Pomerantseva, E.A., Goodilin, E.A., Kulova, T.L., Skundin, A.M., and Tretyakov, Y.D.: LixV2O5 nanobelts for high capacity lithium-ion battery cathodes. Electrochem. Commun. 12, 1154 (2010).Google Scholar
50.Liu, H.M., Wang, Y.G., Li, L., Wang, K.X., Hosono, E., and Zhou, H.S.: Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. J. Mater. Chem. 19, 7885 (2009).Google Scholar
51.Kenneth, J.T., Randolph, A.L., Marcus, J.P., Amy, C.M., and Esther, S.T.: Advanced lithium batteries for implantable medical devices: Mechanistic study of SVO cathode synthesis. J. Power Sources 119-121, 973 (2003).Google Scholar
52.Mao, C.J., Wu, X.C., and Zhu, J.J.: Large scale preparation of beta-AgVO3 nanowires using a novel sonochemical route. J. Nanosci. Nanotechnol. 8, 3203 (2008).Google Scholar
53.Zhang, S.Y., Li, W.Y., Li, C.S., and Chen, J.: Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures. J. Phys. Chem. B 110, 24855 (2006).Google Scholar
54.Gao, Q., Mai, L.Q., Xu, L., Gu, Y.H., Hu, B., Zhao, Y.L., and Han, J.H.: Construction and electrical transport properties of one-dimensional vanadium oxide nanomaterials. Sciencepaper Online 5, 323 (2010).Google Scholar
55.Cheng, K.C., Chen, F.R., and Kai, J.J.: V2O5 nanowires as a functional material for electrochromic device. Sol. Energy Mater. Sol. Cells 90, 1156 (2006).Google Scholar
56.Xiong, C.R., Aliev, A.E., Gnade, B., and Balkus, K.J. Jr.: Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2, 293 (2008).Google Scholar
57.Zhang, W., Yang, T., Li, W.J., Li, G.C., and Jiao, K.: Rapid and sensitive electrochemical sensing of DNA damage induced by V2O5 nanobelts/HCl/H2O2 system in natural dsDNA layer-by-layer films. Biosens. Bioelectron. 25, 2370 (2010).CrossRefGoogle ScholarPubMed
58.Zylbersztejn, A. and Mott, N.F.: Metal-insulator transition in vanadium dioxide. Phys. Rev. B 11, 4383 (1975).CrossRefGoogle Scholar
59.Xiao, D., Kim, K.W., and Zavada, J.M.: Electrically programmable photonic crystal slab based on the metal-insulator transition in VO2. J. Appl. Phys. 97, 106102 (2005).Google Scholar
60.Xiao, D., Kim, K.W., Lazzi, G., and Zavada, J.M.: Tunable waveguiding in electrically programmable VO2-based photonic crystals. J. Appl. Phys. 99, 113106 (2006).Google Scholar
61.Povey, I.M., Bardosova, M., Chalvet, F., Pemble, M.E., and Yates, H.M.: Atomic layer deposition for the fabrication of 3D photonic crystals structures: Growth of Al2O3 and VO2 photonic crystal systems. Surf. Coat. Tech. 201, 9345 (2007).Google Scholar
62.Pevtsov, A.B., Kurdyukov, D.A., Golubev, V.G., Akimov, A.V., Meluchev, A.A., Sel’kin, A.V., Kaplyanskii, A.A., Yakovlev, D.R., and Bayer, M.: Ultrafast stop band kinetics in a three-dimensional opal- VO2 photonic crystal controlled by a photoinduced semiconductor-metal phase transition. Phys. Rev. B 75, 153101 (2007).Google Scholar
63.Hu, B., Ding, Y., Chen, W., Kulkarni, D., Shen, Y., Tsukruk, V.V., and Wang, Z.L.: External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 22, 5134 (2010).CrossRefGoogle Scholar
64.Campbell, J.K., Sun, L., and Crooks, R.M.: Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779 (1999).Google Scholar
65.Heller, I., Kong, J., Heering, H.A., Williams, K.A., Lemay, S.G., and Dekker, C.: Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137 (2005).CrossRefGoogle ScholarPubMed
66.Yang, Y., Xie, C., Ruffo, R., Peng, H.L., Kim, D.K., and Cui, Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).CrossRefGoogle ScholarPubMed
67.Yang, Y., Xie, C., Ruffo, R., Peng, H.L., Kim, D.K., and Cui, Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).Google Scholar
68.Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S., Hudak, N., Liu, X.H., Subramanian, A.K., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).CrossRefGoogle ScholarPubMed
69.Wang, C.M., Xu, W., Liu, J., Choi, D., Arey, B.W., Saraf, L.V., Zhang, J., Yang, Z., Thevuthasan, S., Baer, D.R., and Salmon, N.: In-situ transmission electron microscopy and spectroscopy studies of interfaces in Li-ion batteries: Challenges and opportunities. J. Mater. Res. 25, 1541 (2010).Google Scholar
70.Mai, L.Q., Dong, Y.J., Xu, L., and Han, C.H.: Single nanowire electrochemical devices. Nano Lett. 10, 4273 (2010).Google Scholar