Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T17:09:11.110Z Has data issue: false hasContentIssue false

UV photo-chlorination and -bromination of single-walled carbon nanotubes

Published online by Cambridge University Press:  21 January 2014

Luciana Oliveira
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623
Fei Lu
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623
Lisa Andrews
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623
Gerald A. Takacs*
Affiliation:
School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623
Michael Mehan
Affiliation:
Xerox Analytical Services, Xerox Corporation, Webster, New York 14580
Thomas Debies
Affiliation:
Xerox Analytical Services, Xerox Corporation, Webster, New York 14580
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electron-withdrawing halogen atoms are often bonded to the surface of carbon nanotubes to assist in the conversion from metallic to semiconducting properties. Single-walled carbon nanotubes (SWCNTs) were surface modified using UV photolysis with: (i) a broad band of wave lengths from approximately 250 to 400 nm having a maximum intensity at approximately 300 nm for photolysis of Cl2, (ii) low-pressure Hg lamps emitting 253.7 nm photons for photo-decomposition of HBr, and (iii) low-pressure Hg lamps emitting both 253.7 and 184.9 nm for photo-dissociation of HCl and HBr, respectively, and analyzed by x-ray photoelectron spectroscopy. Chlorine atoms adhered more readily than bromine atoms with the π-conjugation of the SWCNTs. The dominant increase with treatment was observed in the singly bonded chlorine moiety. Chlorine atoms, generated by UV photolysis of Cl2, produced a higher Cl saturation level of approximately 36 at.% than previously observed for multi-walled carbon nanotubes (13 at.%).The degree of chlorination depended on the amount of oxygen on the surface of the SWCNTs. Photo-dissociation of gaseous HCl and HBr showed lower amounts of halogenation on SWCNTs (approximately 5.8 at.% Cl and 2.5 at.% Br, respectively) than photolysis of Cl2.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Seifert, G., Kohler, T., and Frauenheim, T.: Molecular wires, solenoids, and capacitors by sidewall functionalization of carbon nanotubes. Appl. Phys. Lett. 77, 1313 (2000).Google Scholar
Kudin, K.N., Bettinger, H.F., and Scuseria, G.E.: Fluorinated single-wall carbon nanotubes. Phys. Rev. B 63, 045413/1 (2001).Google Scholar
Park, K.A., Choi, Y.S., and Lee, Y.H.: Atomic and electronic structures of fluorinated single-walled carbon nanotubes. Phys. Rev. B 68, 045429/1 (2003).Google Scholar
Barthos, R., Mehn, D., Demortier, A., Pierard, N., Morciaux, Y., Demortier, G., Fonseca, A., and Nagy, J.B.: Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon 43, 321 (2005).Google Scholar
Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J.B., Koos, A.A., Osvath, Z., Kocsonya, A., Biro, L.P., and Kiricsi, I.: Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429 (2002).CrossRefGoogle Scholar
Moonoosawmy, K.R. and Kruse, P.: To dope or not to dope: The effect of sonicating single-wall carbon nanotubes in common laboratory solvents on their electronic structure. J. Am. Chem. Soc. 130, 13417 (2008).Google Scholar
Oliveira, L., Debies, T., and Takacs, G.A.: Surface modification of multi-walled carbon nanotubes with gaseous oxygen and chlorine atoms. J. Adhes. Sci. Technol. 26, 221 (2012).Google Scholar
Prasad, B.L.V., Sato, H., Enoki, T., Hishiyama, Y., Kaburagi, Y., Rao, A.M., Sumanasekera, G.U., and Eklund, P.C.: Intercalated nanographite: Structure and electronic properties. Phys. Rev. B 64, 235407/1 (2001).Google Scholar
Jhi, S-H., Louie, S.G., and Cohen, M.L.: Electronic properties of bromine-doped carbon nanotubes. Solid State Commun. 123, 495 (2002).Google Scholar
Hu, H., Zhao, B., Harmon, M.A., Kamaras, K., Itkis, M.E., and Haddon, R.C.: Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc. 125, 14893 (2003).CrossRefGoogle ScholarPubMed
Park, N., Sung, D., Hong, S., Kang, D., and Park, W.: Metallization of the semiconducting carbon nanotube by encapsulated bromine molecules. Physica E 29, 693 (2005).Google Scholar
Park, N., Miyamoto, Y., Lee, K., Choi, W.I., Ihm, J., Yu, J., and Han, S.: Band gap sensitivity of bromine adsorption at carbon nanotubes. Chem. Phys. Lett. 403, 135 (2005).Google Scholar
Raffaelle, R.P., Landi, B.J., Harris, J.D., Bailey, S.G., and Hepp, A.F.: Carbon nanotubes for power applications. Mater. Sci. Eng., B 116, 233 (2005).Google Scholar
Landi, B.J., Cress, C.D., Evans, C.M., and Raffaelle, R.P.: Thermal oxidation profiling of single-walled carbon nanotubes. Chem. Mater. 17, 6819 (2005).Google Scholar
Sener, U., Entenberg, A., Kahn, B., Egitto, F.D., Matienzo, L.J., Debies, T., and Takacs, G.A.: Adhesion of copper to UV photo-oxidized polyimide (PMDA-ODA) surfaces. In Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Vol. 3, Mittal, K.L. ed.; VSP/Brill, Leiden, 2005; p. 535.Google Scholar
Calvert, J.G. and Pitts, J.N.: Photochemistry (John Wiley & Sons, Inc., New York, NY, 1966), p. 198.Google Scholar
Beamson, G. and Briggs, D.: High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, Chichester, England, 1992).Google Scholar
Krysak, M., Jayasekar, A., Parekh, B., Oliveira, L., Debies, T., Santhanam, K.S.V., DiLeo, R.A., Landi, B.J., Raffaelle, R.P., and Takacs, G.A.: Gas-phase surface functionalization of carbon nanotubes with UV photo-oxidation. In Polymer Surface Modification: Relevance to Adhesion, Vol. 5, Mittal, K.L. ed.; VSP/Brill, Leiden, 2009; p. 125.Google Scholar
Parekh, B., Debies, T., Knight, P., Santhanam, K.S.V., and Takacs, G.A.: Surface functionalization of multi-walled carbon nanotubes with UV and vacuum UV photo-oxidation. J. Adhes. Sci. Technol. 20, 1833 (2006).Google Scholar
Li, B., Zhou, L., Wu, D., Peng, H., Yan, K., Zhou, Y., and Liu, Z.: Photochemical chlorination of graphene. ACS Nano 5, 5957 (2011).Google Scholar
Wang, D-L., Xu, H-L., Su, Z-M., Muhammad, S., and Hou, D-Y.: Probing the chemical functionalization of single-walled carbon nanotubes with multiple carbon ad-dimer defects. Chem. Phys. Chem. 13, 1232 (2012).Google Scholar
Saha, S., Dinadayalane, T.C., Murray, J.S., Leszczynska, D., and Leszczynski, J.: Surface reactivity for chlorination of chlorinated (5,5) armchair SWCNT: A computational approach. J. Phys. Chem. C 116, 22399 (2012).CrossRefGoogle Scholar
Erbahar, D. and Berber, S.: Chlorination of carbon nanotubes. Phys. Rev. B 85, 085426/1 (2012).CrossRefGoogle Scholar
Yang, M., Zhou, L., Wang, J., Liu, Z., and Liu, Z.: Evolutionary chlorination of graphene: From charge-transfer complex to covalent bonding and nonbonding. J. Phys. Chem. C 116, 844 (2012).Google Scholar
Duesberg, G.S., Graupner, R., Downes, P., Minett, A., Ley, L., Roth, S., and Nicoloso, N.: Hydrothermal functionalization of single-walled carbon nanotubes. Synth. Met. 142, 263 (2004).Google Scholar
Khare, B.N., Meyyappan, M., Cassell, A.M., Nguyen, C.V., and Han, J.: Functionalization of carbon nanotubes using atomic hydrogen from glow discharge. Nano Lett. 2, 73 (2002).Google Scholar
Nikitin, A., Ogasawara, H., Mann, D., Denecke, R., Zhang, Z., Dai, H., Cho, K., and Nilsson, A.: Hydrogenation of single-walled carbon nanotubes. Phys. Rev. Lett. 95, 225507/1 (2005).Google Scholar
Zhang, G., Qi, P., Wang, X., Lu, Y., Mann, D., Li, X., and Dai, H.: Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 6026 (2006).Google Scholar
Colomer, J-F., Marega, R., Traboulsi, H., Meneghetti, M., Van Tendeloo, G., and Bonifazi, D.: Microwave-assisted bromination of double-walled carbon nanotubes. Chem. Mater. 21, 4747 (2009).Google Scholar
Gao, B., Zhong, J., Song, L., Wu, Z-Y., Xie, S., Qian, H., Dong, Y., and Luo, Y.: Studies of bromine modified single-walled carbon nanotubes using photoelectron spectroscopy and density-functional theory. Radiat. Phys. Chem. 75, 1939 (2006).Google Scholar