Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:15:04.200Z Has data issue: false hasContentIssue false

Uniformly distributed nickel nanoparticles created by heating the carbon nanotube

Published online by Cambridge University Press:  31 January 2011

Zaoli Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Institute of Physics and Centre for Condensed Matter Physics, Beijing, People's Republic of China, and Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
Min Gao
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
Get access

Abstract

Uniformly distributed nanoparticles created by heating carbon nanotubes synthesized by arc-discharge were studied by electron diffraction, high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and x-ray energy dispersive spectrometer (EDS). The nanoparticles have diameters in the range of 3–15 nm. Electron diffraction pattern and HRTEM images analysis both show that the nanoparticles can be nickel or diamond. EELS and EDS analysis in a dedicated scanning transmission electron microscope showed that the nanoparticles are face-centered-cubic nickel particles rather than diamond nanocrystals. The mechanism of formation of nickel nanoparticles below its melting point is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Marks, L.D., Rep. Prog. Phys. 57, 603 (1994).CrossRefGoogle Scholar
2.Chen, Q., Tanaka, M., and Furuya, K., Surf. Sci. 440, 398 (1999).CrossRefGoogle Scholar
3.Wu, Y., Chen, Q., Takeguchi, M., and Furuya, K., Surf. Sci. 462, 203 (2000).CrossRefGoogle Scholar
4.Wu, Y., Takeguchi, M., Chen, Q., and Furuya, K., Appl. Surf. Sci., 159–160, 486 (2000).CrossRefGoogle Scholar
5.Zhang, P., Zuo, F., Urban, F.K. III, Khahari, A., Griffiths, P., and Hosseini-Tehrani, A., J. Magn. Magn. Mater. 225, 337 (2001).CrossRefGoogle Scholar
6.Kwok, Y.S., Zhang, X.X., Qin, B., and Fung, K.K., Appl. Phys. Lett. 77, 3971 (2000).CrossRefGoogle Scholar
7.Saito, Y., J. Cryst. Growth. 47, 61 (1976).CrossRefGoogle Scholar
8.Zhu, Y.Q., Sekine, T., Kobayashi, T., Takazawa, E., Terrones, M., and Terrones, H., Chem. Phys. Lett. 287, 689 (1998).CrossRefGoogle Scholar
9.Wei, B., Zhang, J., Liang, J., and Wu, D., Carbon 36, 997 (1998).CrossRefGoogle Scholar
10.Shi, Z.J., Lian, Y.F., Liao, F.H., Zhou, X.H., Gu, Z.N., Zhang, Y., Iijima, S., Solid State Commun. 112, 35 (1999).CrossRefGoogle Scholar
11.Banhart, F. and Ajayan, P.M., Nature 382, 433 (1996).CrossRefGoogle Scholar
12.Powder Diffraction File No. 6–0675. (International Centre for Diffraction Data, Newton Square, PA).Google Scholar
13.Pearson, D.H., Ahn, C.C., and Fultz, B., Phys. Rev. B 47, 8471 (1993).CrossRefGoogle Scholar
14.Yuan, J. and Brown, L.M., Micron 31, 515 (2000).CrossRefGoogle Scholar
15.Zhang, M., Efremov, M.Yu., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H., Phys. Rev. B 62, 10548 (2001).CrossRefGoogle Scholar
16.Wang, Z.L., Petroski, J.M., Green, T.C., and El-Sayed, M.A., J. Phys. Chem. B 102, 6145 (1998).CrossRefGoogle Scholar