Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:59:52.851Z Has data issue: false hasContentIssue false

Ultraviolet photon-induced heteroepitaxy of CdTe on GaAs

Published online by Cambridge University Press:  31 January 2011

N. W. Cody
Affiliation:
Department of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverum. Oregon 97006
U. Sudarsan
Affiliation:
Department of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverum. Oregon 97006
R. Solanki
Affiliation:
Department of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverum. Oregon 97006
Get access

Abstract

Ultraviolet photon-induced metalorganic vapor phase epitaxy of CdTe films on GaAs substrates has been investigated using diethyltelluride and dimethylcadmium as the precursor gases. The relationship between the deposition parameters and the properties of the epilayers have been examined using transmission electron microscopy and x-ray rocking curves. Epilayers grown at 6μm/h show an x-ray double-crystal rocking curve full width at half-maximum (FWHM) of 250 arcsec.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Farrow, R. F. C., Jones, G. R., Williams, G. M., and Young, I. M., Appl. Phys. Lett. 39, 954 (1981).CrossRefGoogle Scholar
2Cole, H. S., Woodbury, H. H., and Schetzina, J. F., J. Appl. Phys. 55, 3166 (1984).CrossRefGoogle Scholar
3Mullin, J. B., Irvine, S. J. C., and Ashen, D. J., J. Cryst. Growth 55, 92 (1981).CrossRefGoogle Scholar
4Nishitani, K., Ohkatu, R., and Murotari, T., J. Electron. Mater. 12, 612 (1983).Google Scholar
5Mar, H. A., Chee, K. T., and Salanski, N., Appl. Phys. Lett. 44, 237 (1984).CrossRefGoogle Scholar
6Mullin, J. B. and Irvine, S. J. C., J. Vac. Sci. Technol. A 4, 700 (1986).CrossRefGoogle Scholar
7Kisker, D. W. and Feldman, R. D., J. Cryst. Growth 72, 102 (1985).CrossRefGoogle Scholar
8Zinck, J. J., Brewer, P. D., Jensen, J. E., Olson, G. L., and Tutt, L. W., Appl. Phys. Lett. 52, 1434 (1988).CrossRefGoogle Scholar
9Otsuka, N., Kolodziejski, L. A., Gunshor, R. C., Dutta, S., Bicknell, R. N., and Schertzina, J. F., Appl. Phys. Lett. 46, 860 (1985).CrossRefGoogle Scholar
10Ponce, F. A., Anderson, G. B., and Ballingall, J. M., Surf. Sci. 168, 564 (1986).CrossRefGoogle Scholar
11Lu, P. Y., Williams, L. H., and Chu, S. N. G., J. Vac. Sci. Technol. A 4, 2137 (1986).CrossRefGoogle Scholar
12Brown, P. D., Hails, J. E., Russell, G. J., and Woods, J., Appl. Phys. Lett. 50, 1144 (1987).CrossRefGoogle Scholar
13Petruzzello, J., Olego, D., Ghandhi, S. K., Taskor, N. R., and Bhat, I., Appl. Phys. Lett. 50, 1423 (1987).CrossRefGoogle Scholar
14Irvine, S. J. C., Mullin, J. B., Robbins, D. J., and Glasper, J. L., J. Electrochem. Soc. 132, 968 (1985).CrossRefGoogle Scholar
15Ehrlich, D. J., Osgood, R. M, and Deutsch, T. F., J. Vac. Sci. Technol. 21, 23 (1982).CrossRefGoogle Scholar