Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T10:07:49.294Z Has data issue: false hasContentIssue false

Ultraviolet Photoluminescence from 4H–SiC Nanocrystalline Films Deposited on Silicon Substrate

Published online by Cambridge University Press:  31 January 2011

Zhengping Fu
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Academic Sinica, Hefei, 230026, People's Republic China, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China, andState Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, People's Republic of China
Beifang Yan
Affiliation:
Structure Research Laboratory, University of Science and Technology of China, Academic Sinica, Hefei, 230026, People's Republic China, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China, andState Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, 310027, People's Republic of China
Ruchuan Liu
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
Yaozhong Ruan
Affiliation:
Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
Get access

Abstract

Preferred-orientated 4H–SiC nanocrystalline films on silicon substrates were successfully prepared by the pyrolysis of the polyimide Langmuir–Blodgett films containing nanometer-sized amorphous silicon nitride powders. Fourier-transform infrared spectra revealed 4H–SiC nanoparticles with interfacial silicon oxide. Ultraviolet photoluminescence with energies above the band gap of bulk 4H–SiC was observed from the films in which the mean size of 4H–SiC particles was 10 nm, while no photoluminescence was observed from the films in which the mean size of particles was 17 nm. A quantum confinement/luminescence center model is suggested to explain the origin of the ultraviolet luminescence.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
Hou, X.Y., Shi, G., and Wang, X., Appl. Phys. Lett. 62, 1097 (1993).CrossRefGoogle Scholar
Chen, Q., Zhou, G., Zhu, J., Fan, C., Li, X-G., and Zhang, Y., Phys. Lett. A 224, 133 (1996).CrossRefGoogle Scholar
Casady, J.B. and Johnson, R.W., Solid-State Electronics 39, 1409 (1996).CrossRefGoogle Scholar
Matsumoto, T., Takahashi, J., Futagi, T., Mimura, H., and Kanemitsu, Y., Appl. Phys. Lett. 64, 226 (1994).CrossRefGoogle Scholar
Shor, J.S., Bemis, L., Kurtz, A.D., Grimberg, I., Weiss, B.Z., Macmillian, M.F., and Choyke, W.J., J. Appl. Phys. 76, 4045 (1994).CrossRefGoogle Scholar
Petrovakoch, V., Sreseli, O., Polisski, G., Kovalev, D., Muschik, T., and Koch, F., Thin Solid Films 255, 107 (1995).CrossRefGoogle Scholar
Wang, J.N., Chen, Z.M., Woo, P.W., Ge, W.K., Wang, Y.Q., and Yu, M.B., Appl. Phys. Lett. 74, 923 (1999).CrossRefGoogle Scholar
Hwang, J.D., Fang, Y.K., Wu, K.H., and Yaung, D.N., Appl. Phys. Lett. 67, 1736 (1995).CrossRefGoogle Scholar
Liao, L.S., Bao, X.M., Yang, Z.F., and Min, N.B., Appl. Phys. Lett. 66, 2382 (1995).CrossRefGoogle Scholar
Yoshii, K. and Baba, Y., J. Electrochem Soc. 145, 2241 (1998).Google Scholar
Lee, K.H., Du, Y.L., and Lee, T.H., Bull. Korean Chem. Soc. 21, 769 (2000).Google Scholar
Shin, W., Hikosaka, T., Seo, W-S., Ahn, H.S., Sawaki, N., and Koumoto, K., J. Electrochem. Soc. 145, 2456 (1998).CrossRefGoogle Scholar
Wang, W., Liu, S., Li, D., and Liu, Z., J. Inorg. Mater. (in Chinese) 11, 448 (1996).Google Scholar
Zhou, Y., He, P., and Hong, K., Chinese J. Appl. Chem. (in Chinese) 11, 14 (1994).Google Scholar
(a) Fu, Z., Yang, B., Liu, R., Fu, J., He, P., Liu, Z., and Ruan, Y., Mater. Lett. 37, 294 (1998); (b) R. Liu, B. Yang, Z. Fu, Q. Chen, L. Hong, M. Li, Z. Liu, and Y. Ruan, Thin Solid Films 345, 188 (1999); (c) B. Yang, Y. Zhou, W. Cai, P. He, Y. Ruan, Y. Huang, X.L. Xianming, and G. Zhou, Appl. Phys. Lett. 64, 1445 (1994).CrossRefGoogle Scholar
Hayashi, S., Tanimoto, S., and Yamamoto, K., J. Appl. Phys. 68, 5300 (1990).CrossRefGoogle Scholar
Nienhaus, H., Kampen, T.U., and Mönch, W., Surf. Sci. 324, L328 (1995).CrossRefGoogle Scholar
Wu, X.L., Siu, G.G., Stokes, M.J., Fan, D.L., Gu, Y., and Bao, X.M., Appl. Phys. Lett. 77, 1292 (2000).CrossRefGoogle Scholar
Konstantinov, A.O., Henry, A., Harris, C.I., and Janzen, E., Appl. Phys. Lett. 66, 2250 (1995).CrossRefGoogle Scholar
Monguchi, T., Fujioka, H., Ono, K., Oshima, M., Serikawa, T., Yamashita, S., Yoshii, K., and Baba, Y., J. Electrochem. Soc. 145, 2241 (1998).CrossRefGoogle Scholar
Ludwig, M.H., Crit. Rev. Solid. State. Mater. Sci. 21, 265 (1996).CrossRefGoogle Scholar
Harima, H., Nakashima, S., and Nemura, T., J. Appl. Phys. 78, 1996 (1995).CrossRefGoogle Scholar
Son, N.T., Hai, P.N., Chen, W.M., Hallin, C., Monemar, B., and Janzen, E., Phys. Review. B 61, 10544 (2000).CrossRefGoogle Scholar
Qin, G.G., Mater. Res. Bull. 33, 1857 (1998).CrossRefGoogle Scholar