Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T12:13:51.776Z Has data issue: false hasContentIssue false

Ultrastructural analyses of nanoscale apatite biomimetically grown on organic template

Published online by Cambridge University Press:  31 January 2011

S.I. Hong*
Affiliation:
Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109-1078; and Department of Nano-materials Engineering, Chungnam National University, Taejon, 305-764, Korea
K.H. Lee
Affiliation:
Department of Nano-materials Engineering, Chungnam National University, Taejon, 305-764, Korea
M.E. Outslay
Affiliation:
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099
D.H. Kohn
Affiliation:
Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109-1078; and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099
*
a) Address all correspondence to this author. e-mail: [email protected], [email protected]
Get access

Abstract

The ultrastructure of nanoscale apatite biomimetically formed on an organic template from a supersaturated mineralizing solution was studied to examine the morphological and crystalline arrangement of mineral apatites. Needle-shaped apatite crystal plates with a size distribution of ∼100 to ∼1000 nm and the long axis parallel to the c axis ([002]) were randomly distributed in the mineral films. Between these randomly distributed needle-shaped apatite crystals, amorphous phases and apatite crystals (∼20–40 nm) with the normal of the grains quasi-perpendicular to the c axis were observed. These observations suggest that the apatite film is an interwoven structure of amorphous phases and apatite crystals with various orientations. The mechanisms underlying the shape of the crystalline apatite plate and aggregated apatite nodules are discussed from an energy-barrier point of view. The plate or needle-shaped apatite is favored in single-crystalline form, whereas the granular nodules are favored in the polycrystalline apatite aggregate. The similarity in shape in both single-crystalline needle-shaped apatite and polycrystalline granular apatite over a wide range of sizes is explained by the principle of similitude, in which the growth and shape are determined by the forces acting upon the surface area and the volume.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Bunker, B.C., Rieke, P.C., Tarasevich, B.J., Campbell, A.A., Fryxell, G.E., Graff, G.L., Song, L., Liu, J., Virden, J.W.McVay, G.L.: Ceramic thin-film formation on functionalized interfaces through biomimetic processing. Science 264, 48 1994CrossRefGoogle ScholarPubMed
2Tanahashi, M., Kokubo, T., Nakamura, T., Katsura, Y.Nagano, M.: Ultrastructural study of an apatite layer formed by biomimetic process and its bonding to bone. Biomaterials 17, 47 1996CrossRefGoogle ScholarPubMed
3Chou, Y.F., Chiou, W.A., Xu, Y., Dunn, J.C.Y.Wu, B.M.: The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials 25, 5323 2004CrossRefGoogle ScholarPubMed
4Vasudev, D.V., Ricci, J.L., Sabatino, C., Li, P.Parsons, R.: In vivo evaluation of a biomimetic apatite coating grown on titanium surfaces. J. Biomed. Mater. Res. 69A, 629 2004CrossRefGoogle Scholar
5Murphy, W.L., Kohn, D.H.Mooney, D.J.: Growth of continuous bone-like mineral within porous poly(lactic-co-glycolic acid) scaffolds in-vitro. J. Biomed. Mater. Res. 50, 50 20003.0.CO;2-F>CrossRefGoogle Scholar
6Kohn, D.H., Shin, K., Hong, S.I., Jayasuriya, A.C., Leonova, E.V., Rossello, R.A.Krebsbach, P.H.: Self-assembled mineral scaffold as a model systems for biomineralization and tissue engineering in Proceedings of 8th International Conference on the Chemistry and Biology of Mineralized Tissue, edited by W.J. Landis and J. Sodek (University of Toronto Press, Toronto, ON, Canada) 2005 216Google Scholar
7Müller, L.Müller, F.A.: Preparation of SBF with different HCO3 content and its influence on the composition of biomimetic apatites. Acta Biomater. 2, 181 2006CrossRefGoogle ScholarPubMed
8Yang, X.B., Green, D.W., Roach, H.I., Clarke, N.M., Anderson, H.C., Howdle, S.M., Shakesheff, K.M.Oreffo, R.O.: Novel osteoinductive biomimetic scaffolds stimulate human osteoprogenitor activity-implications for skeletal repair. Connect. Tissue Res. 44(Suppl. 1), 312 2003CrossRefGoogle ScholarPubMed
9Hench, L.L.: Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74, 1487 1991CrossRefGoogle Scholar
10Eanes, E.D.: Dynamics of calcium phosphate precipitation in Calcification in Biological Systems, edited by E. Bonucci (CRC Press, Boca Raton, FL) 1992 1CrossRefGoogle Scholar
11LeGeros, R.Z.: Calcium Phosphates in Oral Biology and Medicine Karger Basel, Switzerland 1991 12Google ScholarPubMed
12Janasova, L., Muller, F.A., Helebrant, A., Strnad, J.Greil, P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25, 1187 2004CrossRefGoogle Scholar
13Lu, X.Leng, Y.: TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials 25, 1779 2004CrossRefGoogle ScholarPubMed
14Layani, J.D., Guisinier, F.J.G., Steuer, P., Cohen, H., Voegel, J.C.Mayer, I.: High resolution electron microscopy study of synthetic carbonate and aluminum containing apatites. J. Biomed. Mater. Res. 50, 199 20003.0.CO;2-Q>CrossRefGoogle ScholarPubMed
15Aizawa, M., Porter, A.E., Best, S.M.Bonfield, W.: Ultrastructural observation of single crystal apatite fibers. Biomaterials 26, 3427 2005CrossRefGoogle Scholar
16Leng, Y., Chen, J.Qu, S.: TEM study of calcium phosphate precipitation on HA/TCP ceramics. Biomaterials 24, 2125 2003CrossRefGoogle ScholarPubMed
17Luong, L.N., Hong, S.I., Patel, R.J., Outslay, M.E.Kohn, D.H.: Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27, 1175 2006CrossRefGoogle ScholarPubMed
18Lee, K.H.Hong, S.I.: Interfacial and twin boundary structures of nanostructured Cu-Ag filamentary composites. J. Mater. Res. 18, 2194 2003CrossRefGoogle Scholar
19LeGeros, R.Z., LeGeros, J.P., Trautz, O.R., Klein, E.Shirra, W.P.: Conversion of monetite, CaHPO4 to apatites: Effect of carbonate on the crystallinity and the morphology of the appatite crystallites. Adv. X-ray Anal. 14, 57 1971Google Scholar
20Eanes, E.D., Termine, J.D.Nylen, M.U.: An electron microscope study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calcif. Tissue Res. 12, 143 1973CrossRefGoogle ScholarPubMed
21Eanes, E.D.Poster, A.S.: A note on the crystal growth of hydroxyapatite precipitated from aqueous solutions. Mater. Res. Bull. 6, 377 1970CrossRefGoogle Scholar
22Tomalin, R.C.: The principle of similitude. Phys. Rev. 3, 244 1914Google Scholar
23Thomson, D.W.: On Growth and Form Cambridge University Press Cambridge, UK 1961Google Scholar
24Weibel, E.W. Fractal geometry: A design principle for living organisms.Am. J. Physiol. Lung Cell. Mol. Physiol.,261, L361 1991CrossRefGoogle Scholar
25Hong, S.I.: Influence of dynamic strain aging on the dislocation structure. Mater. Sci. Eng. 79, 1 1986CrossRefGoogle Scholar
26Godfrey, A.Hughes, D.A.: Physical parameters linking deformation microstructures over a wide range of length scale. Scripta Mater. 51, 831 2004CrossRefGoogle Scholar
27Hong, S.I.Kwon, H.J.: Superplasticity of Cu-Ag microcomposites. J. Mater. Res. 16, 1822 2001CrossRefGoogle Scholar
28Luong, L.N., Hong, S.I., Patel, R.J., Outslay, M.E.Kohn, D.H.: Spatial control of protein within biomimetically nucleated mineral. Biomaterials 27, 1175 2006CrossRefGoogle ScholarPubMed
29Rindby, A., Voglis, P.Engstrom, P.: Microdiffraction studies of bone tissues using synchrotron radiation. Biomaterials 19, 2083 1998CrossRefGoogle ScholarPubMed
30Hong, S.I., Hong, S.K.Kohn, D.K.: Nanostructural analysis of murine femoral trabecular bone. (unpublished study, University of Michigan) 2007Google Scholar
31Sahar, N.D., Hong, S.I.Kohn, D.H.: Micro- and nano-structural analyses of damage in bone. Micron 36, 617 2005CrossRefGoogle Scholar
32Weiner, S.Wagner, H.D.: The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 1998CrossRefGoogle Scholar
33Khan, K., McKay, H., Kannus, P., Bailey, D., Wark, J.Bennel, K.: Physical Activity and Bone Health (Human Kinetics, Champaign, IL, 2001) 16Google Scholar
34Martin, R.B., Burr, D.B.Sharkey, N.A.: Skeletal Tissue Mechanics Springer New York 1998 227CrossRefGoogle Scholar
35Rubin, M.A., Jasiuk, I., Taylor, J., Rubin, J., Ganey, T.Apkarian, R.P.: TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33, 270 2003CrossRefGoogle ScholarPubMed
36Landis, W.J., Song, M.J., Leith, A., McEwen, L.McEwen, B.F.: Mineral and organic interaction in normally calcifying tendon visualized in three dimensions by high volatage electron microscopic tomography and graphic imaging reconstruction. J. Struct. Biol. 110, 39 1993CrossRefGoogle Scholar
37Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A 221, 163 1920Google Scholar
38Hong, S.I.Suryanarayana, C.: Is ductilization of intermetallic compounds by nanostructure processing a possibility? Mater. Trans., JIM 42, 502 2001CrossRefGoogle Scholar
39Rohanizadeh, R., LeGeros, R.Z., Bohie, S., Pilet, P., Barbier, A.Daculsi, G.: Ultrastructural properties of bone mineral of control and tiludronate-treated osteoporotic rat. Calcif. Tissue Int. 67, 330 2000CrossRefGoogle ScholarPubMed
40Kohn, D.H., Sahar, N.D., Hong, S.I., Golcuk, K.Morris, M.D.: Local mineral and matrix changes associated with bone adaptation and microdamage in Mechanical Behavior of Biological and Biomimetic Materials, edited by A.J. Bushby, V.L. Ferguson, C-C. Ko, and M.L. Oyen (Mater. Res. Soc. Symp. Proc. 898E, Warrendale, PA) 2006 0898-L09-03CrossRefGoogle Scholar
41Zaffe, D.: Some consideration on biomaterials and bone. Micron. 36, 583 2005CrossRefGoogle Scholar
42Dorozhkin, S.V.: Calcium orthophosphates. J. Mater. Sci. 42, 1061 2007CrossRefGoogle Scholar
43Rho, J.Y., Kuhn-Spearing, L.Zioupos, P.: Mechanical properties and the hierarchial structure of bone. Med. Eng. Phys. 20, 92 1998CrossRefGoogle Scholar