Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T11:37:25.288Z Has data issue: false hasContentIssue false

Ultrasonic study on complex glass system doped with erbium oxide

Published online by Cambridge University Press:  11 February 2016

Ahmed M. Eid*
Affiliation:
Ultrasonic Department, National Institute of Standards, Giza, Egypt
Mohamed A. Farag
Affiliation:
Physics Department, Faculty of Science, El-Azhar University, Cairo, Egypt
Khaled Abd-ullah Abd El-Rahman
Affiliation:
Physics Department, Faculty of Science, El-Azhar University, Cairo, Egypt
Mohamed M. El-Okr
Affiliation:
Physics Department, Faculty of Science, El-Azhar University, Cairo, Egypt
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Glasses doped with rare earth elements (lanthanide series) are the most popular materials used in upconversion devices. The main aspect to develop these devices is to find suitable host materials for rare earth ions. The host material should have a high transmission of the upconverted photons, high thermal stability, good mechanical properties, low price, and easy to manufacture and shaping. Present work is concerned with studying the mechanical and structural properties for the oxide glass system doped with rare earth metal (erbium oxide, Er2O3). Ultrasonic pulse-echo technique is used to measure the sound velocities in the glass system (30%B2O3·30%Bi2O3·20%Li2O·10%BaO·10%Pb3O4·xEr2O3), (x = 0, 0.5, 1, 2, 3, 4) mol%. Ultrasound velocities (longitudinal and shear) are measured as a function of the Er2O3 content at a frequency of 4 MHz for longitudinal wave and 2 MHz for the shear wave at a temperature of 300 K. The elastic moduli and some physical parameters, such as Debye temperature, coordination number, and compressibility, were evaluated. Furthermore, the dimensionality of the glass network has been calculated in terms of the d ratio which equals G/B ratio. These parameters beside the x-ray diffraction, differential scanning calorimetry, and Fourier Transform Infrared (FTIR) measurements throw more light on the structure of the glass system. The measurements in this study exhibit remarkable anomalous changes in the network structure of the investigated glass doped with Er2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mekki, A., Ziq, Kh. A., Holland, D., and McConville, C.F.: Magnetic properties of praseodymium ions in Na2O–Pr2O3–SiO2 glasses. J. Magn. Magn. Mater. 260, 60 (2003).Google Scholar
Kuisheng, Y., Huili, X., Rinang, W., Jiaqiang, K., Wiezhong, W., Bin, Z., and Xiyan, Z.: Research on up—conversion mechanism in Er3+/Yb3+ co-doped oxyfluoride glass. J. Rare Earths 24, 175 (2006).Google Scholar
Pisarska, J., Pisarski, W., and Ryba-Romanowski, W.: Laser spectroscopy of Nd3+ and Dy3+ ions in Lead borate glasses. Opt. Laser Technol. 42(5), 805 (2010).Google Scholar
Saddeek, Y.: Structural, and acoustical studies of lead sodium borate glasses. J. Alloys Compd. 467(1–2), 14 (2009).CrossRefGoogle Scholar
Lavin, V., Babu, P., Jayasankar, C., Martin, I.R., and Rodriguez, V.D.: On the local structure of Eu3+ ions in oxyfluoride glasses: Comparison with fluoride and oxide glasses. J. Chem. Phys. 115, 10935 (2001).CrossRefGoogle Scholar
Doweidar, H. and Saddeek, Y.: FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348 (2009).Google Scholar
Kodama, M.: Anomalous behavior of ultrasonic velocity in rubidium borate glasses. J. Am. Ceram. Soc. 74, 2603 (1991).CrossRefGoogle Scholar
Acet, M., Brennan, T., Cankurtaran, M., Saunders, G.A., and Zähres, H.: Elastic and nonlinear acoustic properties and thermal expansion of rare-earth metaphosphate glasses. Philos. Mag. B 77(6), 1633 (1998).Google Scholar
Sampaio, J.A., Baesso, M.L., Gama, S., Coelho, A.A., Eiras, J.A., and Santos, I.A.: Rare earth doping effect on the elastic moduli of low silica calcium aluminosilicate glasses. J. Non-Cryst. Solids 304, 193 (2002).Google Scholar
Kumar, A.R. and Veeraiah, N.: Acoustic investigations on LiF–B2O3 glasses doped with certain rare-earth ions. J. Mater. Sci. Lett. 18, 475 (1999).CrossRefGoogle Scholar
Honma, T., Benino, Y., Fujiwara, T., Sato, R., and Komatsu, T.: New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system. Opt. Mater. 20(1), 27 (2002).Google Scholar
Becker, P.: Thermal and optical properties of glasses of the system Bi2O3–B2O3 . Cryst. Res. Technol. 38(1), 74 (2003).Google Scholar
Ehrt, D.: Structure, properties and applications of borate glasses. Glass Technol. 41(6), 182 (2000).Google Scholar
Ihara, R., Honma, T., Benino, Y., Fujiwara, T., and Komatsu, T.: Second order optical nonlinearities of metastable BiBO3 phases in crystallized glasses. Opt. Mater. 27, 403 (2004).Google Scholar
Kamitsos, E.I., Karakassides, M.A., and Chryssikos, G.D.: Cation-network interactions in binary alkali metal borate glasses. A far-infrared study. J. Phys. Chem. 91, 5807 (1987).Google Scholar
Kamitsos, E.I., Karakassides, M.A., and Chryssikos, G.D.: Structure of borate glasses. Part 1: Raman study of cesium, rubidium and potassium borate glasses. Phys. Chem. Glasses 30(6), 229 (1989).Google Scholar
Chryssikos, G.D., Kamitsos, E.I., and Karakassides, M.A.: Structure of borate glasses. Part 2. Alkali induced network modifications in terms of structure and properties. Phys. Chem. Glasses 31(3), 109 (1990).Google Scholar
Krogh-Moe, J.: Interpretation of the infra-red spectra of boron oxide and alkali borate glasses. Phys. Chem. Glasses 6(2), 46 (1965).Google Scholar
Kodama, M., Hirashima, T., and Matsushita, T.: Anomalous behavior of ultrasonic velocity in cesium borate glasses. Phys. Chem. Glasses 34(4), 129 (1993).Google Scholar
El-Adawy, A. and Moustafa, Y.: Elastic properties of bismuth borate glasses. J. Phys. D: Appl. Phys. 32(21), 2791 (1999).Google Scholar
Saddeek, Y.: Structural analysis of alkali borate glasses. Phys. B (Amsterdam, Neth.) 344(1–4), 163 (2004).Google Scholar
Saddeek, Y. and Abd El Latif, L.: Effect of TeO2 on the constants of elasticity of sodium borate glasses. Phys. B (Amsterdam, Neth.) 348(1–4), 475 (2004).Google Scholar
Saddeek, Y.: Elastic properties of Gd3+ doped tellurovanadate glasses using pulse-echo technique. Mater. Chem. Phys. 91(1), 146 (2005).Google Scholar
El-Mallawany, R.A.H.: Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, New York, 2002).Google Scholar
Makishima, A. and Mackenzie, J.: Direct calculation of the Young's modulus of glass. J. Non-Cryst. Solids 12(1), 35 (1973).CrossRefGoogle Scholar
Makishima, A. and Mackenzie, J.: Calculation of bulk modulus, shear modulus, and Poisson’s ratio of glass. J. Non-Cryst. Solids 17(2), 147 (1975).Google Scholar
Makishima, A., Tamura, Y., and Sakaino, T.: Constants of elasticity and refractive indices of aluminosilicate glasses containing Y2O3, La2O3, and TiO2 . J. Am. Ceram. Soc. 61(5–6), 247 (1978).CrossRefGoogle Scholar
Bridge, B., Patel, N., and Waters, D.: On the elastic constants and structure of the inorganic oxide glasses. Phys. Status Solidi A 77(2), 655 (1983).Google Scholar
Bridge, B. and Higazy, A.: Model of the compositional dependence of the constants of elasticity of polycomponent oxide glasses. Phys. Chem. Glasses 27(1), 1 (1986).Google Scholar
Rocherulle, J., Ecolivet, C., Poulain, M., Verdier, P., and Laurent, Y.: Elastic moduli of oxynitride glasses: Extension of Makishima and Mackenzie’s theory. J. Non-Cryst. Solids 108(2), 187 (1989).Google Scholar
Inaba, S., Fujino, S., and Morinaga, K.: Young's modulus and compositional parameters of oxide glasses. J. Am. Ceram. Soc. 82(12), 3501 (1999).Google Scholar
Varshneya, A.K.: Fundamentals of Inorganic Glasses (Acadamic Press, New York, 1994).Google Scholar
Khalifa, F.A., El-Hadi, Z.A., Moustafa, F.A., and Hassan, N.A.: Density and molar volume of some sodium silicate, lead borate and lead silicate glasses. Indian J. Pure Appl. Phys. 27(6), 279 (1989).Google Scholar
Gao, L., Xue, S., Zhang, L., Sheng, Z., Ji, F., Dai, W.S., Yu, L., and Zeng, G.: Effect of alloying elements on properties and microstructures of SnAgCu solders. Microelectron. Eng. 87(11), 20252034 (2010).Google Scholar
Seo, S.K., Kang, S.K., Shih, D.Y., and Lee, H.M.: The evolution of microstructure and microhardness of Sn–Ag and Sn–Cu solders during high temperature aging. Microelectron. Reliab. 49, 288 (2009).Google Scholar
ElBatal, F.H., Marzouk, S.Y., Nada, N., and Desouky, S.M.: Gamma-ray interaction with copper-doped bismuth–borate glasses. Phys. B 391, 88 (2007).Google Scholar
Ardelean, I., Cor, S., Lucacel, R.C., and Hulpus, O.: EPR and FT-IR spectroscopic studies of B2O3–Bi2O3–MnO glasses. Solid State Sci. 7, 1438 (2005).CrossRefGoogle Scholar
Dimitriev, Y. and Mihailova, V.: Infrared spectral investigation of bismuthate glasses. In: Proceedings of the 16th International Congress on Glass, Vol. 3; Fernandez Navarro and Jose Maria, eds. (Boletín de la Sociedad Española de Cerámica y Vidrio, Madrid, 1992); pp. 293298.Google Scholar
Iordanova, R., Dimitrov, V., Dimitriev, Y., and Klissurski, D.: Glass-formation and structure of glasses IN the V2O5–MoO3–Bi2O3 system. J. Non-Cryst. Solids 180, 58 (1994).Google Scholar
Manisha Pal, A., Hirota, K., Tsujigami, Y., and Sakata, H.: Structural and electrical properties of MoO3-TeO2 glasses. J. Phys. D: Appl. Phys. 34, 459 (2001).Google Scholar
Dimitrov, V., Dimitrov, Y., and Montenero, A.: IR spectra and structure of V2O5–GeO2–Bi2O3 glasses. J. Non-Cryst. Solids 180, 51 (1994).Google Scholar
Sindhu, S., Sanghi, S., Agarwal, A., Seth, V.P., and Kishore, N.: Structural, optical, physical and electrical properties of V2O5.SrO.B2O3 glasses. Spectrochim. Acta, A 64, 196 (2006).Google Scholar
Kashif, A. and Abd El-Maboud, A., and Ratep, A.: Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results Phys. 4, 1 (2014).Google Scholar
Verhoef, A.H. and Den Hartog, H.W.: Infrared spectroscopy of network and cation dynamics in binary and mixed alkali borate glasses. J. Non-Cryst. Solids 182, 221 (1995).CrossRefGoogle Scholar
Kamitsos, E.I., Patsis, A.P., Kararkassides, M.A., and Chryssikos, G.D.: Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126, 52 (1990).Google Scholar
El-Egili, K.: Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses. Phys. B 325, 340 (2003).Google Scholar
Zhou, Y., Dai, S., Wang, J., Xu, T., Nie, Q., and Huang, S.: Spectroscopic properties of Er3+:4I13/2 level in Bi2O3–B2O3–GeO2–Na2O glasses. J. Alloys Compd. 472, 203 (2009).CrossRefGoogle Scholar
Maniu, D., Ardelean, I., Iliescu, T., Cinta, S., and Cozar, O.: Raman spectroscopic investigations of the oxide glass system (1 − x)(3B2O3·K2O) xMO (MO = V2O5 or CuO). J. Mol. Struct. 410/411, 291294 (1997).CrossRefGoogle Scholar
Krishna Murthy, M., Murthy, K.S.N., and Veeraiah, N.: Dielectric properties of NaF B2O3 glasses doped with certain transition metal ions. Bull. Mater. Sci. 23(4), 285 (2000).Google Scholar
Doweidar, H. and Saddeek, Y.B.: Effect of La2O3 on the structure of lead borate glasses. J. Non-Cryst. Solids 356, 1452 (2010).Google Scholar
Wells, A.: Structural Inorganic Chemistry, 4th ed. (Clarendon Press, Oxford, 1975).Google Scholar
El-Mallawany, R.: Structural interpretations on tellurite glasses. Mater. Chem. Phys. 63, 109 (2000).CrossRefGoogle Scholar
Rajendran, V., Palanivelu, N., Modak, D.K., and Chaudhuri, B. K.: Ultrasonic investigation on ferroelectric BaTiO3 doped 80V2O5–20PbO oxide glasses. Phys. Status Solidi A 180, 467 (2000).Google Scholar
Hwa, L., Hsieh, K., and Liu, L.: Constants of elasticity of low silica calcium alumino–silicate glasses. Mater. Chem. Phys. 78(1), 105 (2003).Google Scholar
Chen, C., Wu, Y., and Hwa, G.: Temperature dependence of elastic properties of ZBLAN glasses. Mater. Chem. Phys. 65(3), 306 (2000).Google Scholar
El-Mallawany, R., El-Khoshkhany, N., and Afifi, H.: Ultrasonic studies of (TeO2)50–(V2O5)50–x(TiO2) glasses. Mater. Chem. Phys. 95, 321 (2006).Google Scholar