Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T03:24:14.077Z Has data issue: false hasContentIssue false

Ultrahigh-pressure densification of nanocrystalline WB ceramics

Published online by Cambridge University Press:  31 January 2011

Jianghua Wang
Affiliation:
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, People's Republic of China
Get access

Abstract

Phase-pure nanostructured WB ceramics are hot pressed at ultrahigh pressures of 1.0 to 3.0 GPa and high temperatures of 700 to 1000 °C (UHPHT) for 60 min. The UHPHT samples are nanograin size from 15 to 40 nm. Our experimental observation shows that ultrahigh pressure could improve densification, and the density of WB samples could reach 99.4% of theoretical. The comparative experiments carried out at ambient pressure and temperatures of 550 to 1100 °C for 60 min indicate that the external pressure was favorable for phase-pure and highly dense WB formation. In addition, the UHPHT samples give a high hardness value of 28.9 ± 0.8 GPa.

Keywords

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shein, I.R., Ivanovskii, A.L.Influence of lattice vacancies on the structural, electronic, and cohesive properties of niobium and molybdenum borides from first-principles calculations. Phys. Rev. B 73, 144108 (2006)CrossRefGoogle Scholar
2.Matkovich, M.I., Samsonov, G.V., Hagenmuller, P., Lundstrom, T.Boron and Refractory Borides edited by M.I. Matkovich (Springer-Verlag, Berlin 1977)CrossRefGoogle Scholar
3.Fahrenholtz, W.G., Hilmas, G.E., Talmy, I.G., Zaykoski, J.A.Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007)CrossRefGoogle Scholar
4.Usta, M., Ozbek, I., Ipek, M., Bindal, C., Ucisik, A.H.The characterization of borided pure tungsten. Surf. Coat. Technol. 194, 330 (2005)CrossRefGoogle Scholar
5.Johnson, D.L., Harmon, B.N., Liu, S.H.Self-consistent electronic structure of the refractory metal ZrB2, a pseudographite intercalation compound. J. Chem. Phys. 73, 1898 (1980)CrossRefGoogle Scholar
6.Ihara, H., Hirabayashi, M., Nakagawa, H.Band structure and x-ray photoelectron spectrum of ZrB2. Phys. Rev. B 16, 726 (1977)CrossRefGoogle Scholar
7.Anishchik, V.M., Dorozhkin, N.N.Electronic structure of TiB2 and ZrB2. Phys. Status Solidi B 160, 173 (1990)CrossRefGoogle Scholar
8.Yeh, C.L., Chen, W.H.Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis. J. Alloys Compd. 420, 111 (2006)CrossRefGoogle Scholar
9.Brandstötter, J., Lengauer, W.Multiphase reaction diffusion in transition metal–boron systems. J. Alloys Compd. 262–263, 390 (1997)CrossRefGoogle Scholar
10.Khor, K.A., Yu, L.G., Sundararajan, G.Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 478, 232 (2005)CrossRefGoogle Scholar
11.Locci, A.M., Licheri, R., Orrù, R., Cao, G.Reactive spark plasma sintering of rhenium diboride. Ceram. Int. 35, 397 (2009)CrossRefGoogle Scholar
12.Binder, J., Roth, G.An evaluation of molybdenum borides as cutting tools. Powder Metall. Bull. 5, 154 (1953)Google Scholar
13.Bodrova, L.G., Koval'chenko, M.S., Serebryakova, T.I.Preparation of tungsten tetraboride. Powder Metall. Met. Ceram. 13, 1 (1974)CrossRefGoogle Scholar
14.Chen, X.Q., Fu, C.L., Krčmar, M., Painter, G.S.Electronic and structural origin of ultraincompressibility of 5d transition-metal diborides MB2 (M = W, Re, Os). Phys. Rev. Lett. 100, 196403 (2008)CrossRefGoogle Scholar
15.Kawanowa, H., Gotoh, Y., Otani, S., Yamamoto, K., Souda, R.Formation of monolayer graphite at the WB2 (0001) surface. Surf. Sci. 454, 49 (2000)CrossRefGoogle Scholar
16.Wang, S.M., He, D.W., Zou, Y.T., Wei, J.J., Lei, L., Li, Y.J., Wang, J.H., Wang, W.D., Kou, Z.L.High-pressure and high-temperature sintering of nanostructured bulk NiAl materials. J. Mater. Res. 24, 2089 (2009)CrossRefGoogle Scholar
17.Qin, J.Q., He, D.W., Wang, J.H., Fang, L.M., Lei, L., Li, Y.J., Hu, J., Kou, Z.L., Bi, Y.Is rhenium diboride a superhard material? Adv. Mater. 20, 4780 (2008)CrossRefGoogle Scholar
18.Sung, C.M.A century of progress in the development of very high pressure apparatus for scientific research and diamond synthesis. High Temp.–High Press. 29, 253 (1997)CrossRefGoogle Scholar
19.Itoh, H., Matsudaira, T., Naka, S., Hamamoto, H., Obayashi, M.Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron. J. Mater. Sci. 22, 2811 (1987)CrossRefGoogle Scholar
20.Rudy, E.Experimental Phase Equilibria of Selected Binary, Ternary, and Higher Order Systems, Part V, The Phase Diagram W–B–C (Air Force Materials Laboratory 1969)Google Scholar
21.Lei, L., He, D.Synthesis of GaN crystals through solid-state metathesis reaction under high pressure. Cryst. Growth Des. 9, 1264 (2009)CrossRefGoogle Scholar
22.He, D.W., Zhao, Q., Wang, W.H., Che, R.Z., Liu, J., Luo, X.J., Wang, W.K.Pressure-induced crystallization in a bulk amorphous Zr-based alloy. J. Non-Cryst. Solids 297, 84 (2002)CrossRefGoogle Scholar
23.Okada, S., Kudou, K., Lundström, T.Preparations and some properties of W2B, δ-WB and WB2 crystals from high-temperature metal solutions. Jpn. J. Appl. Phys. 34, 226 (1995)CrossRefGoogle Scholar
24.Pierson, H.O.Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications (Noyes Publications, Westwood, NJ 1992)Google Scholar