Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:04:44.076Z Has data issue: false hasContentIssue false

Two-step oxygen injection process for growing ZnO nanorods

Published online by Cambridge University Press:  31 January 2011

Yung-Kuan Tseng
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Bldg. 77, 195 Section 4 Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, Republic of China
Hsu-Cheng Hsu
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 300, Taiwan, Republic of China
Wen-Feng Hsieh
Affiliation:
Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 300, Taiwan, Republic of China
Kuo-Shung Liu
Affiliation:
Department of Material Science and Engineering, National Tsing-Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan, Republic of China
I-Cherng Chen
Affiliation:
Materials Research Laboratories, Industrial Technology Research Institute, Bldg. 77, 195 Section 4 Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, Republic of China
Get access

Abstract

Uniform hexagonal prismatic zinc oxide rods were grown over the entire alumina substrate at 550°C using a two-step oxygen injection process, whether the substrates were coated with a catalyst or not. X-ray diffraction showed that all of the depositions exhibited a preferred orientation in the (002) plane. The influence of oxygen concentration was investigated by changing the oxygen flow rate. Oxygen concentration affected the size of ZnO nanorods, especially the diameter. The ZnO nanorods were further checked using high-resolution transmission electron microscopy, photoluminescence, Raman spectroscopy, and room-temperature ultraviolet lasing. The results showed that the rods were single crystals and had excellent optical properties. By observing the growth process, we found that the diameter increased slowly, but the longitudinal growth rate was very high. The growth of ZnO nanorods revealed that the uniform hexagonal prismatic ZnO nanorods were synthesized through vapor deposition growth and a self-catalyzed vapor–liquid–solid (VLS) process.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
2.Givargizov, E.I., J. Cryst. Growth 32, 20 (1975).CrossRefGoogle Scholar
3.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
4.Lee, S.T., Wang, N., and Lee, C.S., Mater. Sci. Eng. A 286, 16 (2000).CrossRefGoogle Scholar
5.Chen, C.C. and Yeh, C.C., Adv. Mater. 12, 738 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
6.Zhu, J. and Fan, S., J. Mater. Res. 14, 1175 (1999).CrossRefGoogle Scholar
7.Yazawa, M., Koguchi, M., Muto, A., Ozawa, M., and Hiruma, K., Appl. Phys. Lett. 60, 2051 (1992).CrossRefGoogle Scholar
8.Duan, X.F. and Lieber, C.M., Adv. Mater. 279, 208 (2000).Google Scholar
9.Homma, Y., Finnie, P., Ogino, T., Noda, H., and Urisu, T., J. Appl. Phys. 86, 3083 (1999).CrossRefGoogle Scholar
10.Dai, Z.R., Pan, Z.W., and Wang, Z.L., Adv. Funct. Mater. 13, 9 (2003).CrossRefGoogle Scholar
11.Zhu, Y.Q., Hu, W.B., Hsu, W.K., Terrones, M., Grobert, N., Hare, J.P., Kroto, H.W., Walton, D.R.M., and Terrones, H., J. Mater. Chem. 9, 3173 (1999).CrossRefGoogle Scholar
12.Bai, Z.G., Yu, D.P., Zhang, H.Z., Ding, Y., Gai, X.Z., Hang, Q.L., Xiong, G.C., and Feng, S.Q., Chem. Phys. Lett. 303, 311 (1999).CrossRefGoogle Scholar
13.Nielsen, K.F., J. Cryst. Growth 3–4, 141 (1968).CrossRefGoogle Scholar
14.Sharma, S.D. and Kashyap, S.C., 42, 5302 (1971).Google Scholar
15.Li, J.Y., Chen, X.L., Li, H., He, M., and Qiao, Z.Y., J. Cryst. Growth 233, 5 (2001).CrossRefGoogle Scholar
16.Yumoto, H., Sako, T., Gotoh, Y., Nishiyama, K., and Kaneko, T., J. Cryst. Growth 203, 136 (1999).CrossRefGoogle Scholar
17.Valcarcel, V., Souto, A., and Guitian, F., Adv. Mater. 10, 138 (1998).3.0.CO;2-A>CrossRefGoogle Scholar
18.Huang, M.H., Wu, Y., Feick, H., Tran, N., Weber, E., and Yang, P., Adv. Mater. 13, 113 (2000).3.0.CO;2-H>CrossRefGoogle Scholar
19.Pan, Z.W., Dai, Z.R., and Wang, Z.L., Science 291, 1947 (2001).CrossRefGoogle Scholar
20.Park, W.I., Kim, D.H., Jung, S-W., and Yi, G-C., Appl. Phys. Lett. 80, 4232 (2002).CrossRefGoogle Scholar
21.Wu, J.J. and Liu, S-C., Adv. Mater. 14, 215 (2002).3.0.CO;2-J>CrossRefGoogle Scholar
22.Lyu, S.C., Zhang, Y., Ruh, H., Lee, H-J., Shim, H-W., Suh, E-K., and Lee, C.J., Chem. Phys. Lett. 363, 134 (2002).CrossRefGoogle Scholar
23.Tseng, Y-K., Lin, I-N., Liu, K-S., Lin, T-S., and Chen, I-C., J. Mater. Res. 18, 718 (2003).Google Scholar
24.JCPDS Card No. 36–1451 (Joint Committee for Powder Diffraction Standards, ASTM, Philadelphia, PA, 2000).Google Scholar
25.Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., and Choi, H-J, Adv. Func. Mater. 12, 323 (2002).3.0.CO;2-G>CrossRefGoogle Scholar
26.Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.K., Voigt, J.A., and Gnade, B.E., J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
27.Calleja, J.M. and Cardona, M., Phys. Rev. B 16, 3753 (1977).CrossRefGoogle Scholar
28.Decremps, F., Pellicer-Porres, J., Saitta, A.M., Chervin, J-C., and Polian, A., Phys. Rev. B 65, 092101 (2002).CrossRefGoogle Scholar
29.Xu, L.X., Lau, S.P., Chen, J.S., Chen, G.Y., and Tay, B.K., J. Cryst. Growth 223, 201 (2001).CrossRefGoogle Scholar
30.Dai, Y., Zhang, Y., Li, Q.K., and Nan, C.W., Chem. Phys. Lett. 358, 83 (2002); D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).CrossRefGoogle Scholar
31.Kong, Y.C., Yu, D.P., Fang, W., and Feng, S.Q., Appl. Phys. Lett. 78, 407 (2001).CrossRefGoogle Scholar
32.Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., and Yang, P.D., Science 292, 1897 (2001).CrossRefGoogle Scholar
33.Tang, Z.K., Wong, G.K.L., Yu, P., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Appl. Phys. Lett. 72, 3270 (1998).CrossRefGoogle Scholar
34.Chen, Y., Tuan, N.T., Segawa, Y., Jo, H.J., Hong, S.K., and Tao, T., Appl. Phys. Lett. 78, 1469 (2001).CrossRefGoogle Scholar
35.Liu, C., Zapien, J.A., Yao, Y., Meng, X., Lee, C.S., Fan, S., Lifshitz, Y., and Lee, S.T., Adv. Mater. 15, 838 (2003).CrossRefGoogle Scholar
36.Givargizov, E.I., J. Cryst. Growth 31, 20 (1975).CrossRefGoogle Scholar
37.Hu, J.Q., Li, Q., Wong, N.B., Lee, C.S., and Lee, S.T., Chem. Mater. 14, 1216 (2002).CrossRefGoogle Scholar
38.Brewer, L. and Mastick, D.F., J. Phys. Chem. 19, 834 (1951).CrossRefGoogle Scholar
39.Yao, B.D., Chan, Y.F., and Wang, N., Appl. Phys. Lett. 81, 757 (2002).CrossRefGoogle Scholar
40.Binary alloy phase diagrams, 2nd ed., edited by Massalski, T.B., Murray, J.L., Bennett, L.H., and Baker, H. (ASM, Metals Park, OH, 1990), Vol. 3, pp. 29382939.Google Scholar
41.Vayssieres, L., Keis, K., Lindquist, S-E., and Hagfeldt, A., J. Phys. Chem. B 105, 3350 (2001).CrossRefGoogle Scholar
42.Laudise, R.A., Kolb, E.D., and Caporaso, A.J., J. Am. Ceram. Soc. 47, 9 (1964); W-J. Li, E-W. Shi, W-Z. Zhong, and Z-W. Yin, J. Cryst. Growth 203, 186 (1999).CrossRefGoogle Scholar