Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T20:50:24.199Z Has data issue: false hasContentIssue false

A two-powder process for Bi-2223 precursors

Published online by Cambridge University Press:  31 January 2011

T. G. Holesinger
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
K. V. Salazar
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. S. Phillips
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
B. L. Sargent
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. K. Bremser
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. F. Bingert
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. O. Willis
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. E. Peterson
Affiliation:
Superconductivity Technology Center, MS K763, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A two-powder process is described for the production of uniform, fine-grained Bi2Sr2Ca2Cu3Oy (Bi-2223) powders. One powder is the Bi2.1−xPbxSr1.9−yCayOz (2:2 Cu-free) phase. The other is a multi-phase powder of approximate overall composition SrCaCu3Oy. The 2:2 Cu-free is one of the first Bi-containing phases to form from a nominal Bi-2223 mixture of oxides and carbonates. This precursor route was chosen for investigation because (1) the powders have very similar particle morphologies and (2) the mixing volumes are closely matched. Both of these characteristics facilitate the milling and blending process. This precursor mix was found to be stable in that explosive grain growth of undesirable phases was not observed during sintering. Critical current densities up to 26,900 A/cm2 in self field at 75 K were obtained in tapes.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Malozemoff, A., Carter, W. L., Gannon, J., Joshi, C. H., Miles, P., Minot, M., Parker, D., Riley, G. N. Jr, Thompson, E., and Yurek, G., Cryogenics 32, 478 (1992).Google Scholar
2.Li, Q., Brodersen, K., Hjuler, H. A., and Freltoft, T., Physica C 217, 360 (1993).CrossRefGoogle Scholar
3.Wilhelm, M., Neumüller, H. W., and Ries, G., Physica C 185–189, 2399 (1991).CrossRefGoogle Scholar
4.Ueyama, M., Hikata, T., Kato, T., and Sato, K., Jpn. J. Appl. Phys. 30, L1384 (1991).CrossRefGoogle Scholar
5.Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ideda, Y., Tomii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
6.Hatano, T., Aota, K., Ikeda, S., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 27, L2055 (1988).CrossRefGoogle Scholar
7.Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
8.Aota, K., Hattori, H., Hatano, T., Nakamura, K., and Ogawa, K., Jpn. J. Appl. Phys. 28, L2196 (1989).CrossRefGoogle Scholar
9.Asano, T., Tanaka, Y., Fukutomi, M., Jikihara, K., and Maeda, H., Jpn. J. Appl. Phys. 28, L595 (1989).CrossRefGoogle Scholar
10.High, Y. E., Feng, Y., Sung, Y. S., Hellstrom, E. E., and Larbalestier, D. C., Physica C 220, 8192 (1994).CrossRefGoogle Scholar
11.Arendt, R. H., Garbauskas, M. F., Lay, K. W., and Thaczyk, J. E., Physica C 194, 383 (1992).Google Scholar
12.Arendt, R. H., Garbauskas, M. F., and Bednarczk, P. J., Physica C 176, 126 (1991).CrossRefGoogle Scholar
13.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Sinha, S., and Poeppel, R. B., Physica C 212, 66 (1993).Google Scholar
14.Dorris, S. E., Prorok, B. C., Lanagan, M. T., Browning, N. B., Hagen, M. R., Parrell, J. A., Feng, Y., Umezawa, A., and Larbalestier, D. C., Physica C 223, 163 (1994).CrossRefGoogle Scholar
15.Roth, R. S., Burton, B. P., and Rawn, C. J., presented at the Anaheim meeting of the American Ceramic Society, Nov. 1, 1989.Google Scholar
16.Rawn, C. J., Roth, R. S., Burton, B. P., and Hill, M. D., J. Am. Ceram. Soc., 77 (8), 21732178 (1994).CrossRefGoogle Scholar
17.German, R. M., Liquid Phase Sintering (Plenum Press, New York, 1985), pp. 1338.CrossRefGoogle Scholar
18.Jeremie, A., Alami-Yadri, K., Grivel, J-C., and Flukiger, R., Supercond. Sci. Technol. 6, 730735 (1993).Google Scholar
19.Boekholt, M., Gotz, D., Idink, H., Fleuster, M., Hahn, T., Woermann, E., and Güntherodt, G., Physica C 176, 420428 (1991).CrossRefGoogle Scholar