Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:34:13.937Z Has data issue: false hasContentIssue false

Tunable dielectric properties in Mn-doped LuFe2O4 system

Published online by Cambridge University Press:  20 January 2012

Ying Hou
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China; and Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Yiping Yao
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
Sining Dong
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
Xi Huang
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
Xuefeng Sun
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
Xiaoguang Li*
Affiliation:
Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026; and International Center for Materials Physics, Academia Sinica, Shenyang 110015, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The dielectric properties and tunability with external magnetic and electric fields for LuFe2-xMnxO4 (0 ≤ x ≤ 1) are systematically studied. It was found that the dielectric loss, the ferrimagnetic Curie temperature, and the conductivity reduce with increasing Mn doping. One of the most important results is that the room temperature dielectric tunability with low magnetic and electric fields can be achieved in these samples. The analysis demonstrates that the electron transfer between Fe2+ and Fe3+ is efficiently suppressed with Mn doping and thus results in the decreases of the leaky conductivity and the dielectric loss. Furthermore, from the studies on the combination of impedance and modulus complex planes for the samples with different electrodes, the tunability is found to be more closely related to the extrinsic effect than the intrinsic bulk effect.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., and Ramirez, A.P.: Optical response of high-dielectric constant perovskite-related oxide. Science 293, 673 (2001).CrossRefGoogle ScholarPubMed
2.Ikeda, N., Ohsumi, H., Ohwada, K., Ishii, K., Inami, T., Kakurai, K., Murakami, Y., Yoshii, K., Mori, S., Horibe, Y., and Kito, H.: Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436, 1136 (2005).Google Scholar
3.Cheong, S.W. and Mostovoy, M.: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).Google Scholar
4.Subramanian, M.A., He, T., Chen, J.Z., Rogado, N.S., Calvarese, T.G., and Sleight, A.W.: Giant room-temperature magnetodielectric response in the electronic ferroelectric LuFe2O4. Adv. Mater. 18, 1737 (2006).CrossRefGoogle Scholar
5.Li, C.H., Zhang, X.Q., Cheng, Z.H., and Sun, Y.: Room temperature giant dielectric tunability effect in bulk LuFe2O4. Appl. Phys. Lett. 92, 182903 (2008).CrossRefGoogle Scholar
6.Ikeda, N.: Ferroelectric properties of triangular charge-frustrated LuFe2O4. J. Phys. Condens. Matter 20, 434218 (2008).Google Scholar
7.Kuepper, K., Raekers, M., Taubitz, C., Prinz, M., Derks, C., Neumann, M., Postnikov, A.V., de Groot, F.M.F., Piamonteze, C., Prabhakaran, D., and Blundell, S.J.: Charge order, enhanced orbital moment, and absence of magnetic frustration in layered multiferroic LuFe2O4. Phys. Rev. B 80, 220409(R) (2009).CrossRefGoogle Scholar
8.Yoshii, K., Ikeda, N., and Mori, S.: Magnetic and dielectric behavior of TmFe2O4 and TmFeCuO4. J. Magn. Magn. Mater. 310, 1154 (2007).Google Scholar
9.Qin, Y., Wang, Z., Chen, X.M., and Liu, X.Q.: Dielectric and magnetic characteristics of LuFeMgO4 ceramics. J. Appl. Phys. 108, 084111 (2010).CrossRefGoogle Scholar
10.Yoshii, K., Ikeda, N., Matsuo, Y., Horibe, Y., and Mori, S.: Magnetic and dielectric properties of RFe2O4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu). Phys. Rev. B 76, 024423 (2007).Google Scholar
11.Liu, Y., Li, C.H., Zhang, X.Q., Cheng, Z.H., and Sun, Y.: Influence of Mg doping on the giant dielectric tunability in LuFe2O4. J. Appl. Phys. 104, 104112 (2008).CrossRefGoogle Scholar
12.Noh, H.J., Sung, H., Jeong, J., Kim, S.B., Kim, J.Y., and Cho, B.K.: Effect of structural distortion on ferrimagnetic order in Lu1-xLxFe2O4 (L=Y and Er; x=0.0, 0.1, and 0.5). Phys. Rev. B 82, 024423 (2010).Google Scholar
13.Liu, M., Ma, C.R., Collins, G., Liu, J.A., Chen, C.L., Shui, L., Wang, H., Dai, C., Lin, Y.A., He, J., Jiang, J.C., Meletis, E.I., and Zhang, Q.Y.: Microwave dielectric properties with optimized Mn-doped Ba0.6Sr0.4TiO3 highly epitaxial thin films. Cryst. Growth Des. 10, 4221 (2010).CrossRefGoogle Scholar
14.Yuan, Z., Lin, Y., Weaver, J., Chen, X., Chen, C.L., Subramanyam, G., Jiang, J.C., and Meletis, E.I.: Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO3 thin films. Appl. Phys. Lett. 87, 152901 (2005).Google Scholar
15.Hou, Y., Yao, Y.P., Dong, S.N., Teng, M.L., Sun, X.F., and Li, X.G.: Temperature dependence of phonon spectra and structural characteristics in multiferroic LuFe2O4 system. J. Raman Spectrosc. 42, 1695 (2011).Google Scholar
16.Christianson, A.D., Lumsden, M.D., Angst, M., Yamani, Z., Tian, W., Jin, R., Payzant, E.A., Nagler, S.E., Sales, B.C., and Mandrus, D.: Three-dimensional magnetic correlations in multiferroic LuFe2O4. Phys. Rev. Lett. 100, 107601 (2008).CrossRefGoogle ScholarPubMed
17.Phan, M.H., Frey, N.A., Srikanth, H., Angst, M., Sales, B.C., and Mandrus, D.: Magnetism and cluster glass dynamics in geometrically frustrated LuFe2O4. J. Appl. Phys. 105, 07E308 (2009).Google Scholar
18.Cohn, J.L., Peterca, M., and Neumeier, J.J.: Low-temperature permittivity of insulating perovskite manganites. Phys. Rev. B 70, 214433 (2004).Google Scholar
19.Xu, X.S., Angst, M., Brinzari, T.V., Hermann, R.P., Musfeldt, J.L., Christianson, A.D., Mandrus, D., Sales, B.C., McGill, S., Kim, J.W., and Islam, Z.: Charge order, dynamics, and magnetostructural transition in multiferroic LuFe2O4. Phys. Rev. Lett. 101, 227602 (2008).Google Scholar
20.Hou, Y., Yao, Y.P., Zhang, G.Q., Yu, Q.X., and Li, X.G.: Giant dielectric response with an electric field in charge-ordered La1-xCaxMnO3 compounds. J. Am. Ceram. Soc. 92, 1366 (2009).Google Scholar
21.Sinclair, D.C. and West, A.R.: Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989).Google Scholar
22.Belattar, J., Graça, M.P.F., Costa, L.C., Achour, M.E., and Brosseau, C.: Electric modulus-based analysis of the dielectric relaxation in carbon black loaded polymer composites. J. Appl. Phys. 107, 124111 (2010).Google Scholar
23.Cao, G.H., Feng, L.X., and Wang, C.: Grain-boundary and subgrain-boundary effects on the dielectric properties of CaCu3Ti4O12 ceramics. J. Phys. D: Appl. Phys. 40, 2899 (2007).Google Scholar
24.Adams, T.B., Sinclair, D.C., and West, A.R.: Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv. Mater. 14, 1321 (2002).3.0.CO;2-P>CrossRefGoogle Scholar
25.Biškup, N., de Andrés, A., and Martinez, J.L.: Origin of the colossal dielectric response of Pr0.6Ca0.4MnO3. Phys. Rev. B 72, 024115 (2005).CrossRefGoogle Scholar
26.Ganpule, C.S., Roytburd, A.L., Nagarajan, V., Hill, B.K., Ogale, S.B., Williams, E.D., Ramesh, R., and Scott, J.F.: Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films. Phys. Rev. B 65, 014101 (2001).Google Scholar