Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T16:59:44.947Z Has data issue: false hasContentIssue false

Tribo-oxidation of a TiN coating sliding against corundum

Published online by Cambridge University Press:  03 March 2011

E. Vancoille
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
B. Blanpain
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
Ye Xingpu
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
J-P. Celis
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
J. R. Roos
Affiliation:
Departement Metaalkunde en Toegepaste Materiaalkunde, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Leuven, Belgium
Get access

Abstract

This paper is aimed at understanding the tribo-oxidation of a physical vapor-deposited TiN coating when sliding against a corundum ball. This is achieved through a compositional and structural analysis of the wear debris. Wear debris particles generated at three different sliding speeds were analyzed with micro-Raman spectroscopy, transmission electron microscopy, and electron probe microanalysis. The analysis showed that the wear debris when formed at the low and medium sliding speed consist of TiO2 with a nanocrystalline structure containing both anatase and rutile structural elements. Only rutile structural elements could be observed in the debris formed at the high sliding speed. These results on the characterization of the wear debris are interpreted with calculations of the flash temperature in the tribo-contact and with recent ball-on-disk results on the wear rate of TiN as a function of the sliding speed to propose a mechanistic view of the tribo-oxidation and wear process. The relation with previous and recent experimental results on the static oxidation of TiN is also given.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hedenqvist, P., Olsson, M., Wallen, P., Kassman, A., Hogmark, S., and Jacobson, S., Surf. Coat. Technol. 41, 243 (1990), and references therein.CrossRefGoogle Scholar
2Chatterjee, S., Chandrashekhar, S., and Sudarshan, T. S., J. Mater. Sci. 27, 3423 (1992), and references therein.Google Scholar
3Scott, D. S., Seifert, W. W., and Westcott, V. C., Sci. Am., 88 (1974).CrossRefGoogle Scholar
4Singer, I. L., in Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO ASI Series E, edited by Singer, I.L. and Pollack, H. M. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992), Vol. 22, p. 237.CrossRefGoogle Scholar
5Quinn, T. F. J., Tribology Int. 16, 257, 305 (1983).CrossRefGoogle Scholar
6Malliet, B., Celis, J. P., Roos, J. R., Stals, L. M., and Van Stappen, M., Wear 142, 151 (1991).CrossRefGoogle Scholar
7De Bruyn, K., Celis, J. P., Roos, J. R., Stals, L. M., and Van Stappen, M., Wear 166, 127 (1993).CrossRefGoogle Scholar
8Fischer, T. J., in Fundamentals of Friction: Macroscopic and Microscopic Processes, NATO ASI Series E, edited by Singer, I. L. and Pollock, H. M. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992), Vol. 22, p. 299.Google Scholar
9Singer, I. L., Surf. Coat. Technol. 49, 474 (1991).CrossRefGoogle Scholar
10Singer, I. L., Fayeulle, S., and Ehni, P. D., Wear 149, 375 (1991).CrossRefGoogle Scholar
11Vancoille, E., Celis, J. P., and Roos, J. R., Wear 165, 41 (1993).Google Scholar
12Taniguchi, S., Shibata, T., and Okada, A., Mater. Trans., JIM 30, 765 (1989).CrossRefGoogle Scholar
13Tompkins, H. G., J. Appl. Phys. 71, 980 (1992).CrossRefGoogle Scholar
14Desmaison, J., Lefort, P., and Billy, M., Oxidation of Metals 13, 505 (1979).CrossRefGoogle Scholar
15Wittmer, M., Noser, J., and Melchior, H., J. Appl. Phys. 52, 6659 (1981).CrossRefGoogle Scholar
16Suni, I., Sigurd, D., Ho, K. T., and Nicolet, M. A., J. Electrochem. Soc. 130, 1210 (1983).Google Scholar
17Emsberger, C., Nickerson, J., Smith, T., Miller, A. E., and Banks, D., J. Vac. Sci. Technol. A 4, 2784 (1986).Google Scholar
18Ohsaka, T., Izumi, F., and Fujiki, Y., J. Raman Spectrosc. 7, 321 (1978).CrossRefGoogle Scholar
19Porto, S. P. S., Fleury, P. A., and Damien, T. C., Phys. Rev. 154, 522 (1967).Google Scholar
20Sushchinskii, M. M., Raman Spectra of Molecules and Crystals (Israel Program for Scientific Translations, New York, 1972).Google Scholar
21Criado, J. and Real, C., J. Chem. Soc, Faraday Trans. 79, 2765 (1983).Google Scholar
22Ocana, M., Garcia-Ramos, J. V., and Serna, C. J., J. Am. Ceram. Soc. 75, 2010 (1992).Google Scholar
23She, C. Y., Thin Solid Films 154, 239 (1987).CrossRefGoogle Scholar
24Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).Google Scholar
25Howitt, D. G. and Harker, A. B., J. Mater. Res. 2, 201 (1987).Google Scholar
26Boulesteix, C., Kang, Z., and Lottiaux, M., Phys. Status Solidi A 94, 499 (1986).CrossRefGoogle Scholar
27Cowan, R. S. and Winer, W. O., in ASM Handbook, Friction, Lubrication and Wear Technology, edited by Blau, P. (ASM INTERNATIONAL, Materials Park, OH, 1992), Vol. 18, p. 39.Google Scholar
28Hsu, L. S., Solanki, R., Collins, G. J., and She, C. Y., Appl. Phys. Lett. 45, 1065 (1984).Google Scholar
29Samsonov, G. V., The Oxide Handbook (Plenum Press, New York, 1973), p. 122.CrossRefGoogle Scholar
30Franck, M., Oberlander, B. C. O., Celis, J. P., and Roos, J. R., unpublished research.Google Scholar