Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-14T01:43:54.590Z Has data issue: false hasContentIssue false

Transport-reaction controlled chemical vapor deposition of epitaxial Si(1–x)Gex thin films and thermodynamic equilibrium composition

Published online by Cambridge University Press:  18 February 2016

H. Kühne
Affiliation:
Institut für Halbleiterphysik, O-1200 Frankfurt (Oder), Germany
H. Richter
Affiliation:
Institut für Halbleiterphysik, O-1200 Frankfurt (Oder), Germany
Get access

Extract

Comparing experimental CVD Si(1–x)Gex, thin film data of different authors with independently published results of thermodynamic equilibrium calculations leads to the conclusion that thermodynamically calculated compositions of thin films do not fit the experimentally obtained data. Further it will be shown in the paper that the discussed experimental data of Si(1–x)Gex layer composition can be uniquely interpreted by applying a transport-reaction controlled mechanism, which includes the hypothetical formation of silicon atoms containing intermediates of the germanium source compound as well as the germanium atoms forming chemical reaction to be of first order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brownson, J., J. Appl. Phys. 35, 1356 (1964); Trans. AIME 233, 450 (1965).Google Scholar
2. Miller, K. J. and Grieco, M. J., J. Electrochem. Soc. 109, 70 (1962).Google Scholar
3. Aharoni, H., Bar-Lev, A., Blech, J. A., and Margalit, S., Thin Solid Films 11, 313 (1972).Google Scholar
4. Chang, S., Unzicker, D., and Anderson, T. J., Proc. 10th Conf. on CVD (Pennington), 122 (1987).Google Scholar
5. Tang, H.P., Vescan, L., and Lüth, H., J. Cryst. Growth 116, 1 (1992).CrossRefGoogle Scholar
6. de Boer, W. B. and Meyer, D. J., Appl. Phys. Lett. 58, 1286 (1991).CrossRefGoogle Scholar
7. Kamins, T.I. and Meyer, D.J., ibid. 59, 178 (1991).Google Scholar
8. King, C. A., Hoyt, J. L., Noble, D. B., Gronet, C. M., Gibbons, J. F., Scott, M. P., Laderman, S. S., Kamins, T. I., and Turner, J., in Rapid Thermal Annealing/Chemical Vapor Deposition and Integrated Processing, edited by Hodul, D., Gelpey, J. C., Green, M. L., and Seidel, T. E. (Mater. Res. Soc. Symp. Proc. 146, Pittsburgh, PA, 1989), p. 71.Google Scholar
9. Garone, P.M., Sturm, J.C., Schwartz, P.V., Schwarz, S.A., and Wilkins, B.J., Appl. Phys. Lett. 56, 1275 (1990).Google Scholar
10. Vescan, L., Tang, H.P., Apetz, R., and Lüth, H. (unpublished research).Google Scholar
11. Kühne, H. and Morgenstern, Th., Cryst. Res. Technol. 27, 773 (1992).Google Scholar
12. Kühne, H. (unpublished research).Google Scholar
13. Kühne, H. and Morgenstern, Th. (unpublished research).Google Scholar