Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T17:31:07.496Z Has data issue: false hasContentIssue false

Transport properties and microstructure of indium-added cobalt–antimony-based skutterudites

Published online by Cambridge University Press:  03 June 2011

Andreas Sesselmann*
Affiliation:
Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany
Titas Dasgupta
Affiliation:
Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany
Klemens Kelm
Affiliation:
Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany
Eckhard Müller
Affiliation:
Institute of Materials Research, German Aerospace Center (DLR), D-51170 Köln, Germany
Susanne Perlt
Affiliation:
Leibniz-Institute for Surface Modification, D-04318 Leipzig, Germany
Sebastian Zastrow
Affiliation:
Institute of Applied Physics, University of Hamburg, D-20355 Hamburg, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Indium has attracted much attention as a beneficial addition to cobalt–antimony-based skutterudites as a result of good thermoelectric performance. In this study, as-cast InxCo4Sb12 with x = 0.05, 0.2 were examined using x-ray diffraction analysis and scanning electron microscopy. For x = 0.2 we found, besides the skutterudite main phase, nanometer-sized regions of secondary phases distributed along the grain boundaries, which exhibit substructures. As-cast material with x = 0.05 does not show visible precipitates. We further observed that changing one of the heat treatment parameters of In0.2Co4Sb12 has a major effect on the microstructure and shape of the precipitates, but minor influence on the skutterudite matrix composition. Energy dispersive x-ray spectroscopy analysis by transmission electron microscopy) reveals that indium is to a large extent distributed into the skutterudite structure. Measurements of short-term sintered material confirm that the addition of indium and particularly the modification of the synthesis parameter entails to an enhanced ZT.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sales, B.C., Mandrus, D., and Williams, R.K.: Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325 (1996).CrossRefGoogle ScholarPubMed
2.Morelli, D.T., Meisner, G.P., Chen, B., Hu, S., and Uher, C.: Cerium filling and doping of cobalt triantimonide. Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
3.Chen, L.D., Kawahara, T., Tang, X.F., Goto, T., Hirai, T., Dyck, J.S., Chen, W., and Uher, C.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
4.Puyet, M., Lenoir, B., Dauscher, A., Dehmas, M., Stiewe, C., and Mueller, E.: High temperature transport properties of partially filled CaxCo4Sb12 skutterudites. J. Appl. Phys. 95, 4852 (2004).CrossRefGoogle Scholar
5.Nolas, G.S., Cohn, J.L., and Slack, G.A.: Effect of partial void filling on the lattice thermal conductivity of skutterudites. Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
6.Lamberton, G.A. Jr., Bhattacharya, S., Littleton, R.T. IV, Kaeser, M.A., Tedstrom, R.H., Tritt, T.M., Yang, J., and Nolas, G.S.: High figure of merit in Eu-filled CoSb3-based skutterudites. Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
7.Kuznetsov, V.L., Kuznetsova, L.A., and Rowe, D.M.: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites. J. Phys. Condens. Matter 15, 5035 (2003).CrossRefGoogle Scholar
8.Sales, B.C., Chakoumakos, B.C., and Mandrus, D.: Thermoelectric properties of thallium-filled skutterudites. Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
9.Nolas, G.S., Kaeser, M., Littleton, R.T. IV, and Tritt, T.M.: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
10.Nolas, G.S., Yang, J., and Takizawa, H.: Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210 (2004).CrossRefGoogle Scholar
11.He, T., Chen, J., Rosenfeld, H.D., and Subramanian, M.A.: Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759 (2006).CrossRefGoogle Scholar
12.Mallik, R., Stiewe, C., Karpinski, G., Hassdorf, R., and Mueller, E.: Thermoelectric properties of Co4Sb12 skutterudite materials with partial In filling and excess In additions. J. Electron. Mater. 38, 1337 (2009).CrossRefGoogle Scholar
13.Li, H., Tang, X., Zhang, Q., and Uher, C.: High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. Appl. Phys. Lett. 94, 102114 (2009).CrossRefGoogle Scholar
14.Grytsiv, A., Rogl, P., Berger, S., Paul, C., Bauer, E., Godart, C., Ni, B., Abd-Elmeguid, M.M., Saccone, A., Ferro, R., and Kaczorowski, D.: Structure and physical properties of the thermoelectric skutterudites EuyFe4-xCoxSb12. Phys. Rev. B 66, 094411 (2002).CrossRefGoogle Scholar
15.Sesselmann, A., Hassdorf, R., Kelm, K., Perlt, S., and Mueller, E.: Microstructure study of cobalt–antimony based skutterudites with partial indium filling, in 8th European Conference on Thermoelectrics, Como, 262 (2010).Google Scholar
16.Hermann, R.P., Jin, R., Schweika, W., Grandjean, F., Mandrus, D., Sales, B.C., and Long, G.J.: Einstein oscillators in thallium filled antimony skutterudites. Phys. Rev. Lett. 90, 135505 (2003).CrossRefGoogle ScholarPubMed
17.Harnwunggmoung, A., Kurosaki, K., Muta, H., and Yamanaka, S.: High-temperature thermoelectric properties of thallium-filled skutterudites. Appl. Phys. Lett. 96, 202107 (2010).CrossRefGoogle Scholar