Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:19:04.984Z Has data issue: false hasContentIssue false

Transmission in irradiated hydroxyethyl methacrylate copolymer at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

K-P. Lu
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Sanboh Lee
Affiliation:
Department of Materials Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
C. C. Han
Affiliation:
Polymer Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Transmission losses were monitored in the ultraviolet-visible spectra of irradiated hydroxyethyl methacrylate (HEMA) copolymer at elevated temperatures. The transmission in irradiated HEMA in the ultraviolet and visible wave length range was almost the same for doses 400 kGy ≤ Φ ≤ 1000 kGy, but was smaller than that of the nonirradiated HEMA copolymer. The reduction in transmission in the irradiated specimens was attributed to the presence of color centers. The concentration of color centers was enhanced by thermal annealing. The transmission data (or absorption data) at 467 nm was found in good agreement with the theoretical model in which the color center production followed a first-order kinetic process. The rate constant satisfies the Arrhenius equation, and the corresponding activation energy is 17.37 kJ/mol and is independent of the dosage. The results were compared with those reported in the literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Refojo, M.F., Encyclopedia of Polymer Science and Technology (Wiley, New York, 1976), pp. 195219.Google Scholar
2.Ratner, B.D. and Miller, I.F., J. Biomed. Mater. Res. 7, 353 (1973).CrossRefGoogle Scholar
3.Tollar, M., Stol, M., and Kliment, K., J. Biomed. Mater. Res. 3, 305 (1969).CrossRefGoogle Scholar
4.Lazarus, S.M., Guerre, J.N. La, Kay, H., Weinberg, S.R., and Levowitz, B.S., J. Biomed. Mater. Res. 5, 129 (1971).CrossRefGoogle Scholar
5.Janacek, J.J., Macromol. Sci. Rev. Macromol. Chem. 9, 1 (1973).CrossRefGoogle Scholar
6.Refojo, M.F., J. Polym. Sci. A-1 5, 3103 (1967).CrossRefGoogle Scholar
7.Klotz, I. and Franzen, J., J. Am. Chem. Soc. 84, 3461 (1962).CrossRefGoogle Scholar
8.Lee, H.B., John, M.S., and Andrade, J.D., J. Colloid Interface Sci. 51, 225 (1975).CrossRefGoogle Scholar
9.Sung, Y.K., Gregonis, D.E., John, M.S., and Andrade, J.D., J. Appl. Polym. Sci. 26, 3719 (1981).CrossRefGoogle Scholar
10.Symth, G., Quinn, F.X., and McBrierty, V.J., Macromolecules 21, 3198 (1988).CrossRefGoogle Scholar
11.Pathamanathan, K. and Johari, G.P., J. Polym. Sci. (B) Polym. Phys. 28, 675 (1990).CrossRefGoogle Scholar
12.Jeyanthi, R. and Rao, K.P., J. Appl. Polym. Sci. 43, 2333 (1991).CrossRefGoogle Scholar
13.Refojo, M.F. and Yasuda, H., J. Appl. Polym. Sci. 9, 2425 (1965).CrossRefGoogle Scholar
14.Chou, K.F., Han, C.C., and Lee, S., Polym. Eng. Sci. 40, 1004 (2000).CrossRefGoogle Scholar
15.Chou, K.F., Han, C.C., and Lee, S., J. Polym. Sci. (B) Polym. Phys. 38, 659 (2000).3.0.CO;2-R>CrossRefGoogle Scholar
16.Gates, G., Harmon, J.P., Ors, J., and Benz, P., ANTEC, Proceedings of the Annual Technical Conference and Exhibition, Vol. XLVII, Dallas, TX, (Society of Plastic Engineers, Brookfield, CT, 2001), p. 1892.Google Scholar
17.Simha, R., Trans. N.Y. Acad. Sci. 14, 151 (1952).CrossRefGoogle Scholar
18.Miller, A.A., Lawton, E.J., and Balwit, J.S., J. Polym. Sci. XIV, 503 (1954).CrossRefGoogle Scholar
19.Lawton, E.J., Bueche, H.M., and Balwit, J.S., Nature (London) 172, 76 (1953).CrossRefGoogle Scholar
20.Andjelic, S. and Richard, R.E., Macromoleclues 34, 896 (2001).CrossRefGoogle Scholar
21.Taylor, A.G. and Harmon, J.P., Polym. Deg. Stab. 41, 9 (1993).CrossRefGoogle Scholar
22.Bertolucci, P.R.H., Harmon, J.P., Biagtan, E., Schueneman, G., Goldberg, E.P., Schuman, P., and Schuman, W., Polym. Eng. Sci. 38, 699 (1998).CrossRefGoogle Scholar
23.Fujisawa, A., Masuda, S., Oonishi, H., Ikada, Y., Clarke, I.C., and Good, V., Seitai Eairyo 16, 29 (1998).Google Scholar
24.Todd, A.J., J. Polym. Sci. 42, 223 (1969).CrossRefGoogle Scholar
25.David, C., Fuld, D., and Geuskins, G., Makromol. Chem. 139, 269 (1970).CrossRefGoogle Scholar
26.Ohnishi, S.I. and Nitta, I., J. Polym. Sci. XXXVIII, 451 (1959).CrossRefGoogle Scholar
27.Kusy, R.P. and Katz, M.J., J. Mater. Sci. 11, 1475 (1976).CrossRefGoogle Scholar
28.Chen, J., Fu, I.K., and Lee, S.P., Appl. Optics 29, 2669 (1990).CrossRefGoogle Scholar
29.Lin, H.Y., Tsai, Y.Z., and Lee, S., J. Mater. Res. 7, 2833 (1992).CrossRefGoogle Scholar
30.Deng, Q., Yin, Z., and Zhu, R.Y., Nucl Inst. Methods Phys. Res. A, 438, 415 (1999).CrossRefGoogle Scholar
31.Wallace, J.S., Sinclair, M.B., Gillen, K.T., and Clough, R.L.. Radiat. Phys Chem. 41(1/2), 85 (1993).CrossRefGoogle Scholar
32.Harman, J.P., Taylor, A.G., Schueneman, G.T., and Goldberg, E.P., Polym. Deg. Stab. 41, 319 (1992).CrossRefGoogle Scholar
33.Biagtan, E., Goldberg, E., Stephens, R., and Harmon, J.F., Nucl. Instrum. Meth. Phys. Res. B 114, 302 (1996).CrossRefGoogle Scholar
34.Harman, J.P. and Gaynor, J., J. Polym. Sci. Part B, Polym. Phys. 31, 235 (1993).CrossRefGoogle Scholar
35.Harmon, J.P.. Gaynor, J.F., and Taylor, A.G., Radiat. Phys. Chem. 41, 153 (1993).CrossRefGoogle Scholar
36.Lin, C.B. and Lee, S., J. Appl. Polym. Sci. 44, 2213 (1992).CrossRefGoogle Scholar
37.Lu, K.P., Lee, S., and Cheng, C.P., J. Appl. Phys. 88, 5022 (2000).CrossRefGoogle Scholar
38.Catlow, C.R.A., Diller, K.M., and Hobbs, L.W., Philos. Mag. 42, 123 (1980).CrossRefGoogle Scholar
39.Basiev, T.T., Voronko, Y.K., Mirov, S.B., Osiko, V.V., and Prokhorov, A.M., and Sov. J. Quantum Electron 12, 530 (1982).CrossRefGoogle Scholar
40.Chen, J., J. Appl. Optics 24, 1073 (1985).CrossRefGoogle Scholar