Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T07:21:22.652Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of the deformation behavior of Cu/Nb and Cu/Ni nanoscale multilayers during nanoindentation

Published online by Cambridge University Press:  31 January 2011

D. Bhattacharyya
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
N.A. Mara
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. Dickerson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R.G. Hoagland
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
A. Misra
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Nanoscale metallic multilayers, comprising two sets of materials—Cu/Nb and Cu/Ni—were deposited in two different layer thicknesses—nominally 20 and 5 nm. These multilayer samples were indented, and the microstructural changes under the indent tips were studied by extracting samples from underneath the indents using the focused ion beam (FIB) technique and by examining them under a transmission electron microscope (TEM). The deformation behavior underneath the indents, manifested in the bending of layers, reduction in layer thickness, shear band formation, dislocation crossing of interfaces, and orientation change of grains, has been characterized and interpreted in terms of the known deformation mechanisms of nanoscale multilayers.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82, 643 (2002).Google Scholar
2.Mara, N.A., Bhattacharyya, D., Hoagland, R.G., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58, 874 (2008).CrossRefGoogle Scholar
3.McKeown, J., Misra, A., Kung, H., Hoagland, R.G., and Nastasi, M.: Microstructures and strength of nanoscale Cu-Ag multilayers. Scr. Mater. 46, 593 (2002).CrossRefGoogle Scholar
4.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
5.Misra, A. and Kung, H.: Deformation behavior of nanostructure metallic multilayers. Adv. Eng. Mater. 3, 217 (2001).3.0.CO;2-5>CrossRefGoogle Scholar
6.Misra, A., Verdier, M., Kung, H., Embury, J.D., and Hirth, J.P.: Deformation mechanism maps for polycrystalline metallic multilayers. Scr. Mater. 41, 973 (1999).CrossRefGoogle Scholar
7.Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu-X (X = Nb,Cr,Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
8.Verdier, M., Huang, H., Spaepen, F., Embury, J.D., and Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. A 86, 5009 (2006).CrossRefGoogle Scholar
9.Clemens, B.M., Kung, H., and Barnett, S.A.: Structure and strength of multilayers. MRS Bull. 24, 20 (1999).CrossRefGoogle Scholar
10.Huang, H.B. and Spaepen, F.: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
11.Zhang, G.P., Liu, Y., Wang, W., and Tan, J.: Experimental evidence of plastic deformation instability in nanoscale Au/Cu multilayers. Appl. Phys. Lett. 88, 013105 (2006).CrossRefGoogle Scholar
12.Li, Y.P., Zhang, G.P., Tan, J., and Wu, B.: Direct observation of dislocation plasticity in 100 nm scale AuCu multilayers. Appl. Phys. Lett. 91, 061912 (2007).CrossRefGoogle Scholar
13.Zhu, X.F., Li, Y.P., Zhang, G.P., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).CrossRefGoogle Scholar
14.Phillips, M.A., Clemens, B.M., and Nix, W.D.: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers. Acta Mater. 51, 3171 (2003).CrossRefGoogle Scholar
15.Bhattacharyya, D., Mara, N.A., Hoagland, R.G., and Misra, A.: Nanoindentation and microstructural studies of Al/TiN multilayers with unequal volume fractions Scr. Mater. 58, 981 (2008).CrossRefGoogle Scholar
16.Abadias, G., Dub, S., and Shmegera, R.: Nanoindentation hardness and structure of ion beam sputtered TiN,W and TiN/W multilayer hard coatings. Surf. Coat. Technol. 200, 6538 (2006).CrossRefGoogle Scholar
17.Alpas, A.T., Embury, J.D., Hardwick, D.A., and Springer, R.W.: The mechanical properties of laminated microscale composites of Al/AI203. J. Mater. Sci. 25, 1603 (1990).CrossRefGoogle Scholar
18.Hall, E.O.: The deformation and ageing of mild steel. 3. Discussion of results. Proc. Phys. Soc. London, Sec. B 64, 747 (1951).CrossRefGoogle Scholar
19.Petch, N.J.: The cleavage strength of polycrystals. J. Iron. Steel Inst. 174, 25 (1953).Google Scholar
20.Anderson, P.M., Foecke, T., and Hazzledine, P.M.: Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull. 24, 27 (1999).CrossRefGoogle Scholar
21.Li, Q.Z. and Anderson, P.M.: Dislocation-based modeling of the mechanical behavior of epitaxial metallic multilayer thin films. Acta Mater. 53, 1121 (2005).CrossRefGoogle Scholar
22.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008). Doi: 10.1063/1.2938921CrossRefGoogle Scholar
23.Misra, A., Hirth, J.P., Hoagland, R.G., Embury, J.D., and Kung, H.: Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52, 2387 (2004).CrossRefGoogle Scholar
24.Misra, A. and Hoagland, R.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
25.Hay, J.L. and Pharr, G.M.: Instrumented indentation testing, in ASM Handbook, vol. 8 (ASM, Metals Park, OH, 2000).Google Scholar
26.Kramer, D.E., Savage, M.F., Lin, A., and Foecke, T.: Novel method for TEM characterization of deformation under nanoindents in nanolayered materials. Scr. Mater. 50, 745 (2004).CrossRefGoogle Scholar
27.Molina-aldareguia, J.M., Lloyd, S.J., Oden, M., Joelsson, T., Hultman, L., and Clegg, W.J.: Deformation structures under indentations in TiN/NbN single-crystal multilayers deposited by magnetron sputtering at different bombarding ion energies. Philos. Mag. A 82, 1983 (2002).CrossRefGoogle Scholar
28.Mara, N.A., Misra, A., Hoagland, R., Serugeeva, A.V., Tamayo, T., Dickerson, P., and Mukherjee, A.: High-temperature mechanical behavior/microstructure correlation of Cu/Nb nanoscale multilayers. Mater. Sci. Eng., A 493, 274 (2008).CrossRefGoogle Scholar
29.Min, L., Wei-min, C., Nai-gang, L., and Ling-Dong, W.: A numerical study of indentation using indenters of different geometry. J. Mater. Res. 19, 73 (2004).CrossRefGoogle Scholar
30.Anderson, P.M. and Shen, Y.: Transmission of a screw dislocation across a coherent, non-slipping interface. J. Mech. Phys. Solids 55. 956 (2007).Google Scholar