Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T04:01:16.720Z Has data issue: false hasContentIssue false

A transmission electron microscopy study of the crystallinity and secondary phase formation in melt-processed YBa2Cu3O7−δ

Published online by Cambridge University Press:  31 January 2011

Y. Yan
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
A. M. Campbell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
W. M. Stobbs
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
Get access

Abstract

The microstructure of large grain melt-processed YBa2Cu3O7−δ containing 10 molar% excess Y2BaCuO5 prepared and oxygenated under atmospheric pressure has been investigated by transmission electron microscopy (TEM) and optical microscopy. These materials always contain parallel structural and microscopic platelet-like features in the crystallographic a-b plane of a few microns spacing which have been variously described as grain boundaries or microcracks. We have observed such features, which clearly influence the flow of current in melt-processed YBCO, to consist of copper deficient, impurity phase material which can be either amorphous or crystalline in nature. A variety of defects have been observed by high-resolution electron microscopy (HREM) in the vicinity of these platelet boundaries, including double and triple CuO layer stacking faults, which may constitute effective flux pinning sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jones, A.R., Doyle, R.A., Blunt, F.J., and Campbell, A.M., Physica C 196, 6367 (1992).CrossRefGoogle Scholar
2.Murakami, M., Supercond. Sci. Technol. 5, 185203 (1992).CrossRefGoogle Scholar
3.Salama, K., Selvamanickam, V., and Lee, D.F., Processing and Properties of High TcSuperconductors 1: Bulk Materials, edited by Jin, S. (World Scientific Press, Singapore, 1993), pp. 155212.Google Scholar
4.Morita, M., Takebayashi, S., Tanaka, M., Kimura, K., Miyamoto, K., and Sawano, K., Advances in Superconductivity III, Proc. 3rd Int. Symp. Sup., Sendai, November (1990), pp. 733736.Google Scholar
5.Murakami, M., Morita, M., Doi, K., and Myiamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
6.Sengupta, S., Shi, D., Wang, Z., Biondo, A. C., Balachandran, U., and Goretta, K. C., Physica C 11, 43 (1992).CrossRefGoogle Scholar
7.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1989).Google Scholar
8.Goyal, A., Alexander, K.B., Kroeger, D.M., Funkenbusch, P.D., and Burs, S.J., Physica C 210, 197 (1993).CrossRefGoogle Scholar
9.Zanota, A., Kvam, E.P., Balkin, D., and McGinn, P.J., Appl. Phys. Lett. 62, 2722 (1993).CrossRefGoogle Scholar
10.Ayache, J., Odier, P., and Pellerin, N., Supercond. Sci. Technol. 7, 655 (1994).Google Scholar
11.Alexander, K.B., Goyal, A., Kroeger, D.M., Selvamanickam, V., and Salama, K., Phys. Rev. B 45, 5622 (1992).CrossRefGoogle Scholar
12.Zandbergen, H.W., Gronsky, R., Wang, K., and Thomas, G., Nature (London) 331, 596 (1988).Google Scholar
13.Matsui, Y., Takayama-Muromachi, E., and Ono, A., Jpn. J. Appl. Phys. 26, L777 (1988).Google Scholar
14.Beeli, C., Nissen, H-U., Kawamata, Y., and Stadelmann, P., Z. Phys. B73, 313 (1988).Google Scholar
15.Van Tendeloo, G., Broddin, D., Zandbergen, H.W., and Amelinckx, S., Physica C 167, 627 (1990).CrossRefGoogle Scholar
16.Wang, Z.L., Kontra, R., Goyal, A., and Kroeger, D.M., Mater. Sci. Forum 129, 1 (1993).CrossRefGoogle Scholar
17.Wang, Z.L., Goyal, A., and Kroeger, D.M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
18.Yan, Y., Blanchin, M.G., and Wicker, A., Physica C 175, 695 (1990).Google Scholar
19.Krekels, T., Van Tendeloo, G., Amelinckx, S., Karpinski, J., Ruseicki, S., Kaldis, E., and Jilek, E., Physica C 178, 381 (1991).Google Scholar
20.Rmaesh, R., Jin, S., and Marsh, P., Nature (London) 346, 420 (1990).Google Scholar
21.Kaldis, E. and Karpinski, J., Eur. J. Solid State Inorg. Chem. 27, 143 (1990).Google Scholar
22.Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature (London) 336, 660 (1988).Google Scholar
23.Marsh, P., Fleming, R.M., Mandich, M.L., De Santolo, A.M., Kwo, J., Hong, M., and Martinez-miranda, L.J., Nature (London) 334, 141 (1988).CrossRefGoogle Scholar
24.Fischer, P., Karpinski, J., Kaldis, E., Jilek, E., and Rusiecki, S., Solid State Commun. 69, 531 (1989).Google Scholar
25.Yan, Y. and Blanchin, M.G., J. Mater. Chem. 1, 955 (1991).Google Scholar
26.Kulik, J., J. Appl. Phys. 70, 4398 (1991).CrossRefGoogle Scholar
27.Kaldis, E. and Karpinski, J., J. Solid State Inorg. Chem. 27, 143 (1990).Google Scholar
28.Karpinski, J., Beeli, C., Kaldis, E., Wisard, A., and Jilek, E., Physica C 153155, 830 (1988).Google Scholar
29.Karpinski, J. and Kaldis, E., Nature (London) 331, 242 (1988).Google Scholar
30.Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J.L., Marezio, M., Karpinski, J., and Kaldis, E., Nature (London) 334, 596 (1989).Google Scholar
31.Karpinski, K., Rusicki, S., Bucher, B., Kaldis, E., and Jilek, E., Physica C 161, 618 (1989).CrossRefGoogle Scholar
32.Beeli, C., Nissen, H-U., Kawamata, Y., and Stadelmann, P., Z. Phys. B73, 313 (1988).CrossRefGoogle Scholar
33.Yan, Y. and Blanchin, M.G., Mater. Sci. Forum 129, 155 (1993).Google Scholar
34.Mannhart, J. and Tsuer, C.C., Z. Phys. B77, 53 (1989).Google Scholar
35.Matsushita, T., Baorong, N., Murakami, M., Morita, M., Miyamoto, K., Saga, M., Matsuda, S., and Tanino, M., Jpn. J. Appl. Phys. 28, L1545 (1989).CrossRefGoogle Scholar
36.Laval, J.Y., Drouet, M. and Delamarre, C., Ceramiques Supraconductrices a Haute Temperature Critique, Caen, November, 108 (1989).Google Scholar
37.Cardwell, D.A. and Campbell, A.M., IRC Research Review (University of Cambridge, U.K., 1994), p. 144.Google Scholar
38.Ossandon, J.G., Thompson, J.R., Christen, D.K., Sales, B.C., Kerchner, H.R., Thomson, J.O., Sun, Y.R., Lay, K.W., and Tkaczyk, L.J., Phys. Rev. B 45, 12534 (1992).CrossRefGoogle Scholar
39.Campbell, A.M. and Evetts, J.E., Adv. Phys. 21, 199 (1972).Google Scholar
40.Ruikun, W., Hongtao, R., Ling, X., Qing, H., Chaoqun, W., and Dingan, Y., Supercond. Sci. Technol. 3, 344 (1990).Google Scholar