Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:05:06.927Z Has data issue: false hasContentIssue false

Transmission electron microscopy study of Al/Al2O3 composites fabricated by reactive metal infiltration

Published online by Cambridge University Press:  03 March 2011

Y. Gao*
Affiliation:
Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
J. Jia
Affiliation:
Department of Materials Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
K.G. Ewsuk
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Corresponding author. Present address: Environmental and Molecular Sciences Lab, Pacific Northwest Laboratory, P.O. Box 999, Ms K2-12, Richland, Washington 99352.
Get access

Abstract

The microstructure of Al/α-Al2O3 composites made by infiltrating molten Al into dense mullite preforms has been characterized using transmission electron microscopy. The growth of the Al/Al2O3 composites was found to proceed through three stages. Initially, Al infiltrates into a dense mullite preform through grain boundary diffusion, and reacts with mullite at grain boundaries to form a partial reaction zone. Then, a complete reaction takes place in the reaction region between the partial reaction zone and the full reaction zone to convert the dense mullite preform to a composite of α-Al2O3 (matrix) and an Al-Si phase (thin channels). Finally, the reduced Si from the reaction diffuses out of the Al/Al2O3 composite through the metal channels, whereas Al from the molten Al pool is continuously drawn to the reaction region until the mullite preform is consumed or the sample is removed from the molten Al pool. Based on the observed microstructure, infiltration mechanisms have been discussed, and a growth model of the composites is proposed in which the process involves repeated nucleation of Al2O3 grains and grain growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Koczak, M. J. and Premkumar, M. K., J. Metals January, 44 (1993).Google Scholar
2Krstic, V. V., Nicholson, P. S., and Hoagland, R. G., J. Am. Ceram. Soc. 64, 499 (1981).CrossRefGoogle Scholar
3Newkirk, M. S., Lesher, H. D., White, D. R., Kennedy, C. R., Urqhart, A. W., and Claar, T. D., Ceram. Eng. Sci. Proc. 8, 879 (1987).CrossRefGoogle Scholar
4Lange, F. F., Velamakanni, B. V., and Evans, A. G., J. Am. Ceram. Soc. 73, 388 (1990).CrossRefGoogle Scholar
5Claar, T. D., Johnson, W. B., Abdersson, C. A., and Schiroky, G. H., Ceram. Eng. Sci. Proc. 10, 599 (1989).CrossRefGoogle Scholar
6Loehman, R. E., Ewsuk, K., and Tomsia, A. P., J. Am. Ceram. Soc. (1995, in press).Google Scholar
7Newkirk, M. S., Urquhart, A. W., Zwicker, H. R., and Breval, E., J. Mater. Res. 1, 81 (1986).CrossRefGoogle Scholar
8Fareed, A. S., Sonuparlak, B., Lee, C. T., Fortini, A. J., and Schiroky, G. H., Ceram. Eng. Sci. Proc. 11, 782 (1990).CrossRefGoogle Scholar
9Aghajanian, M. K., Macmillan, N. H., Kennedy, C. R., Luszcz, S. J., and Roy, R., J. Mater. Sci. 24, 658 (1989).CrossRefGoogle Scholar
10Breval, E., Aghajanian, M. K., and Luszcz, S. J., J. Am. Ceram. Soc. 73, 2610 (1990).CrossRefGoogle Scholar
11Antolin, S., Nagelberg, A. S., and Creber, D. K., J. Am. Ceram. Soc. 75, 447 (1992).CrossRefGoogle Scholar
12Standage, A. E. and Gani, M. S., J. Am. Ceram. Soc. 50, 101 (1967).CrossRefGoogle Scholar
13Prabriputaloong, K. and Piggott, M. R., J. Am. Ceram. Soc. 55, 184 (1972).Google Scholar
14Binary Alloy Phase Diagrams, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
15JCPD files, Newtown Square, PA, Card No. 10-425.Google Scholar
16Jia, J., M. S. Thesis, New Mexico Institute of Mining and Technology (1994).Google Scholar
17Cornie, J. A., Chiang, Y. M., Uhlmann, D. R., Mortensen, A., and Collins, J. M., Am. Ceram. Soc. Bull. 65, 293 (1986).Google Scholar
18Russell, K. C., Cornie, J. A., and Oh, S.Y., in Interfaces in Metal-Matrix Composites, edited by Dhingra, A. K. and Fishman, S. G. (AIME, Metals Park, OH, 1986), p. 61.Google Scholar
19Oh, S. Y., Cornie, J. A., and Russell, K. C., Ceram. Eng. Sci. Proc. 8, 912 (1987).CrossRefGoogle Scholar
20Weirauch, D. A. Jr., J. Mater. Res. 3, 729 (1988).CrossRefGoogle Scholar
21Loehman, R. E. and Ewsuk, K., unpublished results.Google Scholar
22Lihl, F., Nachtigall, E., and Schwaiger, A., Z. Metallk. 59, 213 (1968).Google Scholar
23Das, S., Dan, T. K., Prasad, S. V., and Rohatgi, P. K., J. Mater. Sci. Lett. 5, 562 (1986).CrossRefGoogle Scholar
24van Gurp, G.J., J. Appl. Phys. 44, 2040 (1973).CrossRefGoogle Scholar
25Nagelberg, A. S., Antolin, S., and Urquhart, A. W., J. Am. Ceram. Soc. 75, 455 (1992).CrossRefGoogle Scholar