Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T21:16:18.706Z Has data issue: false hasContentIssue false

Transmission electron microscope observations of rectangular dislocation networks in an Al70Co15Ni15 decagonal quasicrystal

Published online by Cambridge University Press:  31 January 2011

Yanfa Yan
Affiliation:
Laboratory of Materials Physics, Department of Physics, Wuhan University, 430072 Wuhan, and Beijing Laboratory of Electron Microscopy, Academia Sinica, P.O. Box 2724, 100080 Beijing, People's Republic of China
Renhui Wang
Affiliation:
Laboratory of Materials Physics, Department of Physics, Wuhan University, 430072 Wuhan, and Beijing Laboratory of Electron Microscopy, Academia Sinica, P.O. Box 2724, 100080 Beijing, People's Republic of China
Get access

Abstract

The electron diffraction contrast of two types of rectangular dislocation networks in an Al70Co15Ni15 decagonal quasicrystal has been analyzed. One type of dislocation network consists of two dislocation sets whose Burgers vectors are parallel to the tenfold axis A10 and a twofold axis A2D. The other type of dislocation network consists of two dislocation sets whose Burgers vectors are parallel to the A10 and the other twofold axis of A2P. The characteristics of the diffraction contrast of the dislocation networks in the Al–Co–Ni decagonal phase are similar to those in conventional crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D.Blech, I.Gratias, D. and Cahn, J.W.Phys. Rev. Lett. 53, 1951 (1984).Google Scholar
2Zhang, Z. and Urban, K.Philos. Mag. Lett. 60, 97 (1989).Google Scholar
3Zhang, Z.Wollgarten, M. and Urban, K.Philos. Mag. Lett. 61, 125 (1990).CrossRefGoogle Scholar
4Devaud-Rzepsky, J., Quivy, A.Calvayrac, Y.Cornier-Quiquandon, M., and Gratias, D.Philos. Mag. B 60, 855 (1989).Google Scholar
5Ebalard, S. and Spaepen, F.J. Mater. Res. 4, 39 (1989).CrossRefGoogle Scholar
6Wang, Z. G.Wang, R. and Deng, W. F.Phys. Rev. Lett. 66, 2124 (1991).Google Scholar
7Dai, M.X.Wang, R.Gui, J. and Yan, Y.F.Philos. Mag. Lett. 64, 21 (1991).CrossRefGoogle Scholar
8Jiang, J. C.Wang, N.Fung, K. K. and Kuo, K. H.Phys. Rev. Lett. 67, 1302 (1991).Google Scholar
9Yan, Y. F. and Wang, R.Philos. Mag. Lett. 66, No. 5 (1992).Google Scholar
10Wollgarten, M.Zhang, Z. and Urban, K.Philos. Mag. Lett. 65, 1 (1992).CrossRefGoogle Scholar
11Wang, R. and Cheng, Y. F.Mater. Sci. Forum 2224, 409 (1987).Google Scholar
12Hirsch, P.Howie, A.Nicholson, R. B.Pashley, D.W. and Whelan, M.J., Electron Microscopy of Thin Crystals (Robert E. Krieger Huntington, NY, 1977).Google Scholar
13Yan, Y.F.Wang, R.Gui, J. and Dai, M.X. Acta Crystallogr. (1992, accepted).Google Scholar
14Fung, K. K.Yang, C. Y.Zhou, Y. Q.Zhao, J. G.Zhan, W. S. and Shen, B. G.Phys. Rev. Lett. 56, 2060 (1986).CrossRefGoogle Scholar
15Wollgarten, M.Gratias, D.Zhang, Z. and Urban, K.Philos. Mag. A 64, 819 (1991).CrossRefGoogle Scholar
16Wang, R. and Dai, M. in Proceedings of China-Japan Seminars Quasicrystals, edited by Kuo, K. H. and Ninomiya, T. (World Scientific, Singapore, 1991), p. 182.Google Scholar
17Hull, D. and Bacon, D.J.Introduction to Dislocations, 3rd ed. (Pergamon Press, Oxford, 1984), p. 80.Google Scholar
18De, P. and Pelcovits, R. A.Phys. Rev. B 35, 8609 (1987).CrossRefGoogle Scholar